このアイテムのアクセス数: 87

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
TCBB.2023.3317837.pdf2.36 MBAdobe PDF見る/開く
タイトル: MetNetComp: Database for minimal and maximal gene-deletion strategies for growth-coupled production of genome-scale metabolic networks
著者: Tamura, Takeyuki  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0003-1596-901X (unconfirmed)
著者名の別形: 田村, 武幸
キーワード: Biology and genetics
chemistry
combinatorial algorithms
graphs and networks
linear programming
scientific databases
発行日: Nov-2023
出版者: Institute of Electrical and Electronics Engineers (IEEE)
誌名: IEEE/ACM Transactions on Computational Biology and Bioinformatics
巻: 20
号: 6
開始ページ: 3748
終了ページ: 3758
抄録: Growth-coupled production, in which cell growth forces the production of target metabolites, plays an essential role in the production of substances by microorganisms. The strains are first designed using computational simulation and then validated by biological experiments. In the simulations, gene-deletion strategies are often necessary because many metabolites are not produced in the natural state of the microorganisms. However, such information is not available for many metabolites owing to the requirement of heavy computation, especially when many gene deletions are required for genome-scale models. A database for such information will be helpful. However, developing such a database is not straightforward because heavy computation and the existence of replaceable genes render difficulty in efficient enumeration. In this study, the author developed efficient methods for enumerating minimal and maximal gene-deletion strategies and a web-based database system. MetNetComp provides information on 1) a total of 85, 611 gene-deletion strategies excluding apparent duplicate counting for replaceable genes for 1, 735 target metabolites, 11 constraint-based models, and 10 species; 2) necessary substrates and products in the process; and 3) reaction rates that can be used for visualization. MetNetComp is helpful for strain design and for new research paradigms using machine learning.
著作権等: © 2023 The Authors.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
URI: http://hdl.handle.net/2433/286579
DOI(出版社版): 10.1109/TCBB.2023.3317837
PubMed ID: 37738189
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons