このアイテムのアクセス数: 130

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.actbio.2023.08.006.pdf4.07 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorGulati, Karanen
dc.contributor.authorAdachi, Taijien
dc.contributor.alternative安達, 泰治ja
dc.date.accessioned2024-01-25T06:00:49Z-
dc.date.available2024-01-25T06:00:49Z-
dc.date.issued2023-10-15-
dc.identifier.urihttp://hdl.handle.net/2433/286765-
dc.description.abstractSurface modification of implants in the nanoscale or implant nano-engineering has been recognized as a strategy for augmenting implant bioactivity and achieving long-term implant success. Characterizing and optimizing implant characteristics is crucial to achieving desirable effects post-implantation. Modified implant enables tailored, guided and accelerated tissue integration; however, our understanding is limited to multicellular (bulk) interactions. Finding the nanoscale forces experienced by a single cell on nano-engineered implants will aid in predicting implants’ bioactivity and engineering the next generation of bioactive implants. Atomic force microscope (AFM) is a unique tool that enables surface characterization and understanding of the interactions between implant surface and biological tissues. The characterization of surface topography using AFM to gauge nano-engineered implants' characteristics (topographical, mechanical, chemical, electrical and magnetic) and bioactivity (adhesion of cells) is presented. A special focus of the review is to discuss the use of single-cell force spectroscopy (SCFS) employing AFM to investigate the minute forces involved with the adhesion of a single cell (resident tissue cell or bacterium) to the surface of nano-engineered implants. Finally, the research gaps and future perspectives relating to AFM-characterized current and emerging nano-engineered implants are discussed towards achieving desirable bioactivity performances. This review highlights the use of advanced AFM-based characterization of nano-engineered implant surfaces via profiling (investigating implant topography) or probing (using a single cell as a probe to study precise adhesive forces with the implant surface).en
dc.language.isoeng-
dc.publisherElsevier BVen
dc.publisherActa Materialia Inc.en
dc.rights© 2023 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc.en
dc.rightsThis is an open access article under the CC BY-NC-ND license.en
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectAtomic force microscopyen
dc.subjectAFMen
dc.subjectImplantsen
dc.subjectNanotopographyen
dc.subjectCharacterizationen
dc.subjectCell adhesionen
dc.subjectSingle-cell force spectroscopyen
dc.subjectSCFSen
dc.titleProfiling to Probing: Atomic force microscopy to characterize nano-engineered implantsen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleActa Biomaterialiaen
dc.identifier.volume170-
dc.identifier.spage15-
dc.identifier.epage38-
dc.relation.doi10.1016/j.actbio.2023.08.006-
dc.textversionpublisher-
dc.identifier.pmid37562516-
dcterms.accessRightsopen access-
datacite.awardNumber22F20710-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-22F20710/-
dc.identifier.pissn1742-7061-
dc.identifier.eissn1878-7568-
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitleナノポーラス材料表面における骨芽細胞・線維芽細胞のナノ力学感知特性ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons