このアイテムのアクセス数: 81

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s42003-023-05750-w.pdf4.21 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorFukute, Jumpeien
dc.contributor.authorMaki, Koichiroen
dc.contributor.authorAdachi, Taijien
dc.contributor.alternative福手, 淳平ja
dc.contributor.alternative牧, 功一郎ja
dc.contributor.alternative安達, 泰治ja
dc.date.accessioned2024-01-25T06:00:54Z-
dc.date.available2024-01-25T06:00:54Z-
dc.date.issued2024-01-23-
dc.identifier.urihttp://hdl.handle.net/2433/286766-
dc.description細胞核内のDNAが二重らせんの逆ねじりでゆるむ仕組みを解明 --人為的な遺伝情報の読み出し制御による遺伝子治療技術への応用にも期待--. 京都大学プレスリリース. 2024-01-24.ja
dc.description.abstractDNA underwinding (untwisting) is a crucial step in transcriptional activation. DNA underwinding occurs between the site where torque is generated by RNA polymerase (RNAP) and the site where the axial rotation of DNA is constrained. However, what constrains DNA axial rotation in the nucleus is yet unknown. Here, we show that the anchorage to the nuclear protein condensates constrains DNA axial rotation for DNA underwinding in the nucleolus. In situ super-resolution imaging of underwound DNA reveal that underwound DNA accumulates in the nucleolus, a nuclear condensate with a core–shell structure. Specifically, underwound DNA is distributed in the nucleolar core owing to RNA polymerase I (RNAPI) activities. Furthermore, underwound DNA in the core decreases when nucleolar shell components are prevented from binding to their recognition structure, G-quadruplex (G4). Taken together, these results suggest that the nucleolar shell provides anchoring sites that constrain DNA axial rotation for RNAPI-driven DNA underwinding in the core. Our findings will contribute to understanding how nuclear protein condensates make up constraints for the site-specific regulation of DNA underwinding and transcription.en
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.rights© The Author(s) 2024en
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectNucleolusen
dc.subjectSuper-resolution microscopyen
dc.titleThe nucleolar shell provides anchoring sites for DNA untwistingen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleCommunications Biologyen
dc.identifier.volume7-
dc.relation.doi10.1038/s42003-023-05750-w-
dc.textversionpublisher-
dc.identifier.artnum83-
dc.addressLaboratory of Cellular and Molecular Biomechanics, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University; Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto Universityen
dc.addressLaboratory of Cellular and Molecular Biomechanics, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University; Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University; Department of Micro Engineering, Graduate School of Engineering, Kyoto University; Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto Universityen
dc.addressLaboratory of Cellular and Molecular Biomechanics, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University; Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University; Department of Micro Engineering, Graduate School of Engineering, Kyoto University; Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto Universityen
dc.identifier.pmid38263258-
dc.relation.urlhttps://www.kyoto-u.ac.jp/ja/research-news/2024-01-24-
dcterms.accessRightsopen access-
datacite.awardNumber23KJ1255-
datacite.awardNumber20K20180-
datacite.awardNumber23K17196-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-23KJ1255/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20K20180/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-23K17196/-
dc.identifier.eissn2399-3642-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitleゲノムDNAの標的ツイスティング技術の開発ja
jpcoar.awardTitleナノ転写装置を介したクロマチンの力感知メカニズムの解明ja
jpcoar.awardTitle骨細胞のクロマチン動態を介した力感知メカニズムの解明ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons