このアイテムのアクセス数: 132

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s41467-024-44733-1.pdf2.44 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorChen, Jianmingen
dc.contributor.authorTsuchida, Arataen
dc.contributor.authorMalay, Ali D.en
dc.contributor.authorTsuchiya, Kousukeen
dc.contributor.authorMasunaga, Hiroyasuen
dc.contributor.authorTsuji, Yuien
dc.contributor.authorKuzumoto, Makoen
dc.contributor.authorUrayama, Kenjien
dc.contributor.authorShintaku, Hirofumien
dc.contributor.authorNumata, Keijien
dc.contributor.alternativeチェン, ジャンミンja
dc.contributor.alternative土田, 新ja
dc.contributor.alternativeマライ, アリ・アンドレスja
dc.contributor.alternative土屋, 康佑ja
dc.contributor.alternative増永, 啓康ja
dc.contributor.alternative辻, 優依ja
dc.contributor.alternative葛本, 真子ja
dc.contributor.alternative浦山, 健治ja
dc.contributor.alternative新宅, 博文ja
dc.contributor.alternative沼田, 圭司ja
dc.date.accessioned2024-02-01T08:41:17Z-
dc.date.available2024-02-01T08:41:17Z-
dc.date.issued2024-01-15-
dc.identifier.urihttp://hdl.handle.net/2433/286856-
dc.descriptionマイクロ流路を利用したクモ糸形成プロセスの再現 --マイクロ流体デバイスによる生物プロセスの精密模倣--. 京都大学プレスリリース. 2024-01-31.ja
dc.description.abstractThe development of artificial spider silk with properties similar to native silk has been a challenging task in materials science. In this study, we use a microfluidic device to create continuous fibers based on recombinant MaSp2 spidroin. The strategy incorporates ion-induced liquid-liquid phase separation, pH-driven fibrillation, and shear-dependent induction of β-sheet formation. We find that a threshold shear stress of approximately 72 Pa is required for fiber formation, and that β-sheet formation is dependent on the presence of polyalanine blocks in the repetitive sequence. The MaSp2 fiber formed has a β-sheet content (29.2%) comparable to that of native dragline with a shear stress requirement of 111 Pa. Interestingly, the polyalanine blocks have limited influence on the occurrence of liquid-liquid phase separation and hierarchical structure. These results offer insights into the shear-induced crystallization and sequence-structure relationship of spider silk and have significant implications for the rational design of artificially spun fibers.en
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.rights© The Author(s) 2024en
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectBiomaterials – proteinsen
dc.subjectSelf-assemblyen
dc.titleReplicating shear-mediated self-assembly of spider silk through microfluidicsen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleNature Communicationsen
dc.identifier.volume15-
dc.relation.doi10.1038/s41467-024-44733-1-
dc.textversionpublisher-
dc.identifier.artnum527-
dc.addressBiomacromolecules Research Team, RIKEN Center for Sustainable Resource Science; Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University; Research Centre of Textiles for Future Fashion, The Hong Kong Polytechnic University; School of Fashion and Textiles, The Hong Kong Polytechnic Universityen
dc.addressCluster for Pioneering Research, RIKENen
dc.addressBiomacromolecules Research Team, RIKEN Center for Sustainable Resource Scienceen
dc.addressDepartment of Material Chemistry, Kyoto Universityen
dc.addressJapan Synchrotron Radiation Research Instituteen
dc.addressDepartment of Material Chemistry, Kyoto Universityen
dc.addressDepartment of Material Chemistry, Kyoto Universityen
dc.addressDepartment of Material Chemistry, Kyoto Universityen
dc.addressCluster for Pioneering Research, RIKENen
dc.addressBiomacromolecules Research Team, RIKEN Center for Sustainable Resource Science; Department of Material Chemistry, Kyoto University; Institute for Advanced Biosciences, Keio Universityen
dc.identifier.pmid38225234-
dc.relation.urlhttps://www.t.kyoto-u.ac.jp/ja/research/topics/20240131-
dcterms.accessRightsopen access-
datacite.awardNumber21K15063-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21K15063/-
dc.identifier.eissn2041-1723-
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitleTo Investigate the Assembly Mechanism of Recombinant Spider Dragline Silk Proteins through In-situ Crystallization in a Biomimetic Microfluidic Chipen
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons