このアイテムのアクセス数: 90

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s41598-023-38965-2.pdf7.15 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorVandenbon, Alexisen
dc.contributor.authorDiez, Diegoen
dc.date.accessioned2024-02-16T02:55:41Z-
dc.date.available2024-02-16T02:55:41Z-
dc.date.issued2023-07-22-
dc.identifier.urihttp://hdl.handle.net/2433/287027-
dc.description.abstractWith the growing complexity of single-cell and spatial genomics data, there is an increasing importance of unbiased and efficient exploratory data analysis tools. One common exploratory data analysis step is the prediction of genes with different levels of activity in a subset of cells or locations inside a tissue. We previously developed singleCellHaystack, a method for predicting differentially expressed genes from single-cell transcriptome data, without relying on comparisons between clusters of cells. Here we present an update to singleCellHaystack, which is now a universally applicable method for predicting differentially active features: (1) singleCellHaystack now accepts continuous features that can be RNA or protein expression, chromatin accessibility or module scores from single-cell, spatial and even bulk genomics data, and (2) it can handle 1D trajectories, 2-3D spatial coordinates, as well as higher-dimensional latent spaces as input coordinates. Performance has been drastically improved, with up to ten times reduction in computational time and scalability to millions of cells, making singleCellHaystack a suitable tool for exploratory analysis of atlas level datasets. singleCellHaystack is available as packages in both R and Python.en
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.rights© The Author(s) 2023en
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectComputational biology and bioinformaticsen
dc.subjectData miningen
dc.subjectGene expression analysisen
dc.subjectMachine learningen
dc.subjectSoftwareen
dc.titleA universal tool for predicting differentially active features in single-cell and spatial genomics dataen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleScientific Reportsen
dc.identifier.volume13-
dc.relation.doi10.1038/s41598-023-38965-2-
dc.textversionpublisher-
dc.identifier.artnum11830-
dc.identifier.pmid37481581-
dcterms.accessRightsopen access-
datacite.awardNumber20K06609-
datacite.awardNumber20K07538-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20K06609/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20K07538/-
dc.identifier.eissn2045-2322-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitleComprehensive optimization of cell type-specific gene co-expression networks and construction of a cell type-specific co-expression databaseen
jpcoar.awardTitleElucidation of Natural Killer T cell development in a mice model of rheumatoid arthritisen
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons