ダウンロード数: 45

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
adfm.202306070.pdf4.42 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorYoshinaga, Naotoen
dc.contributor.authorMiyamoto, Takaakien
dc.contributor.authorOdahara, Masakien
dc.contributor.authorTakeda‐Kamiya, Norikoen
dc.contributor.authorToyooka, Kiminorien
dc.contributor.authorNara, Seiaen
dc.contributor.authorNishimura, Harunaen
dc.contributor.authorLing, Fengen
dc.contributor.authorSu'etsugu, Masayukien
dc.contributor.authorYoshida, Minoruen
dc.contributor.authorNumata, Keijien
dc.contributor.alternative吉永, 直人ja
dc.contributor.alternative宮本, 昂明ja
dc.contributor.alternative小田原, 真樹ja
dc.contributor.alternative武田, 紀子ja
dc.contributor.alternative豊岡, 公徳ja
dc.contributor.alternative奈良, 聖亜ja
dc.contributor.alternative西村, はる菜ja
dc.contributor.alternative凌, 楓ja
dc.contributor.alternative末次, 正幸ja
dc.contributor.alternative吉田, 稔ja
dc.contributor.alternative沼田, 圭司ja
dc.date.accessioned2024-02-20T02:35:11Z-
dc.date.available2024-02-20T02:35:11Z-
dc.date.issued2024-02-19-
dc.identifier.urihttp://hdl.handle.net/2433/287049-
dc.description新規ミトコンドリア膜貫通ペプチドによる遺伝子送達 --ミトコンドリア内部で効率的な多重遺伝子発現を達成--. 京都大学プレスリリース. 2023-11-02.ja
dc.description.abstractMitochondria are vital organelles regulating essential cellular functions. Human mitochondrial DNA (mtDNA) consists of 37 genes, 13 of which encode mitochondrial proteins, and the remaining 24 genes encode two ribosomal RNAs and 22 transfer RNAs needed for the translation of the mtDNA-encoded 13 proteins. However, mtDNA often impairs the expression and function of these genes due to various mutations, ultimately causing mitochondrial dysfunction. To recover from this desperate condition, developing the technology to supply all mitochondrial proteins encoded by mtDNA at once is an urgent task, but there is no established strategy for this purpose. In this study, a simple yet effective mitochondrial gene delivery system is proposed comprising an artificial peptide inspired by a transmembrane mitochondrial membrane protein. The designed mitochondria-targeting peptides presented on the carrier surface effectively guide the encapsulated plasmid to the mitochondria, facilitating mitochondrial uptake and gene expression. The developed system successfully delivers exogenous mtDNA to mtDNA-depleted cells and leads to simultaneous multigene expression, ultimately restoring mitochondrial functions, including the mitochondrial respiration rate. The established multiple gene expression system in each mitochondrion is a game-changing technology that can accelerate the development of mitochondrial engineering technologies as well as clinical applications for mitochondrial diseases.en
dc.language.isoeng-
dc.publisherWileyen
dc.rights© 2023 The Authors. Advanced Functional Materials published by Wiley-VCH GmbHen
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.en
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/-
dc.subjectgene deliveryen
dc.subjectmitochondriaen
dc.subjectmitochondria-targeting peptideen
dc.subjectpolyplexen
dc.titleDesign of an Artificial Peptide Inspired by Transmembrane Mitochondrial Protein for Escorting Exogenous DNA into the Mitochondria to Restore their Functions by Simultaneous Multiple Gene Expressionen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleAdvanced Functional Materialsen
dc.identifier.volume34-
dc.identifier.issue8-
dc.relation.doi10.1002/adfm.202306070-
dc.textversionpublisher-
dc.identifier.artnum2306070-
dc.addressBiomacromolecule Research Team, RIKEN Center for Sustainable Resource Science; Institute for Advanced Biosciences, Keio Universityen
dc.addressBiomacromolecule Research Team, RIKEN Center for Sustainable Resource Scienceen
dc.addressBiomacromolecule Research Team, RIKEN Center for Sustainable Resource Scienceen
dc.addressTechnology Platform Division, Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Scienceen
dc.addressTechnology Platform Division, Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Scienceen
dc.addressDepartment of Life Science, College of Science, Rikkyo Universityen
dc.addressChemical Genomics Research Group, RIKEN Center for Sustainable Resource Scienceen
dc.addressChemical Genomics Research Group, RIKEN Center for Sustainable Resource Scienceen
dc.addressDepartment of Life Science, College of Science, Rikkyo Universityen
dc.addressChemical Genomics Research Group, RIKEN Center for Sustainable Resource Science; Department of Biotechnology, Graduate School of Agricultural and Life Sciences, and Collaborative Research Institute for Innovative Microbiology, The University of Tokyoen
dc.addressBiomacromolecule Research Team, RIKEN Center for Sustainable Resource Science; Institute for Advanced Biosciences, Keio University; Department of Material Chemistry, Kyoto Universityen
dc.relation.urlhttps://www.t.kyoto-u.ac.jp/ja/research/topics/202311011301-
dcterms.accessRightsopen access-
datacite.awardNumber22H04975-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-22H04975/-
dc.identifier.pissn1616-301X-
dc.identifier.eissn1616-3028-
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitleいつ、どこで、どのように、核酸の高次構造は形成し機能するのかを予測するja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons