ダウンロード数: 18

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
plantphenomics.0162.pdf6.72 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorKawakatsu, Yaichien
dc.contributor.authorOkada, Ryoen
dc.contributor.authorHara, Mitsuoen
dc.contributor.authorTsutsui, Hirokien
dc.contributor.authorYanagisawa, Naokien
dc.contributor.authorHigashiyama, Tetsuyaen
dc.contributor.authorArima, Akihideen
dc.contributor.authorBaba, Yoshinobuen
dc.contributor.authorKurotani, Ken-ichien
dc.contributor.authorNotaguchi, Michitakaen
dc.contributor.alternative川勝, 弥一ja
dc.contributor.alternative岡田, 龍ja
dc.contributor.alternative原, 光生ja
dc.contributor.alternative筒井, 大貴ja
dc.contributor.alternative柳沢, 直樹ja
dc.contributor.alternative東山, 哲也ja
dc.contributor.alternative有馬, 彰秀ja
dc.contributor.alternative馬場, 嘉信ja
dc.contributor.alternative黒谷, 賢一ja
dc.contributor.alternative野田口, 理孝ja
dc.date.accessioned2024-06-27T06:32:06Z-
dc.date.available2024-06-27T06:32:06Z-
dc.date.issued2024-04-03-
dc.identifier.urihttp://hdl.handle.net/2433/287892-
dc.description植物の生育状態を野外で早期診断できる装置を開発〜ストレスに応答して生じるmiRNAを葉から検出〜.京都大学プレスリリース. 2024-04-04.ja
dc.description.abstractPlants are exposed to a variety of environmental stress, and starvation of inorganic phosphorus can be a major constraint in crop production. In plants, in response to phosphate deficiency in soil, miR399, a type of microRNA (miRNA), is up-regulated. By detecting miR399, the early diagnosis of phosphorus deficiency stress in plants can be accomplished. However, general miRNA detection methods require complicated experimental manipulations. Therefore, simple and rapid miRNA detection methods are required for early plant nutritional diagnosis. For the simple detection of miR399, microfluidic technology is suitable for point-of-care applications because of its ability to detect target molecules in small amounts in a short time and with simple manipulation. In this study, we developed a microfluidic device to detect miRNAs from filtered plant extracts for the easy diagnosis of plant growth conditions. To fabricate the microfluidic device, verification of the amine-terminated glass as the basis of the device and the DNA probe immobilization method on the glass was conducted. In this device, the target miRNAs were detected by fluorescence of sandwich hybridization in a microfluidic channel. For plant stress diagnostics using a microfluidic device, we developed a protocol for miRNA detection by validating the sample preparation buffer, filtering, and signal amplification. Using this system, endogenous sly-miR399 in tomatoes, which is expressed in response to phosphorus deficiency, was detected before the appearance of stress symptoms. This early diagnosis system of plant growth conditions has a potential to improve food production and sustainability through cultivation management.en
dc.language.isoeng-
dc.publisherAmerican Association for the Advancement of Science (AAAS)en
dc.rightsCopyright © 2024 Yaichi Kawakatsu et al.en
dc.rightsExclusive licensee Nanjing Agricultural University. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.titleMicrofluidic Device for Simple Diagnosis of Plant Growth Condition by Detecting miRNAs from Filtered Plant Extractsen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitlePlant Phenomicsen
dc.identifier.volume6-
dc.relation.doi10.34133/plantphenomics.0162-
dc.textversionpublisher-
dc.identifier.artnum0162-
dc.addressBioscience and Biotechnology Center, Nagoya Universityen
dc.addressGraduate School of Bioagricultural Sciences, Nagoya Universityen
dc.addressDepartment of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya Universityen
dc.addressGraduate School of Science, Nagoya Universityen
dc.addressInstitute of Transformative Bio-Molecules, Nagoya Universityen
dc.addressDepartment of Biological Sciences, Graduate School of Science, The University of Tokyoen
dc.addressInstitute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya Universityen
dc.addressDepartment of Biomolecular Engineering, Graduate School of Engineering, Nagoya Universityen
dc.addressInstitute of Quantum Life Science, National Institutes for Quantum Science and Technology (QST)en
dc.addressDepartment of Botany, Graduate School of Science, Kyoto Universityen
dc.identifier.pmid38572468-
dc.relation.urlhttps://www.kyoto-u.ac.jp/ja/research-news/2024-04-04-0-
dcterms.accessRightsopen access-
datacite.awardNumber21H05657-
datacite.awardNumber22H04536-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PUBLICLY-21H05657/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PUBLICLY-22H04536/-
dc.identifier.pissn2097-0374-
dc.identifier.eissn2643-6515-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle不均一な環境下で全身移行するmRNAに関する研究ja
jpcoar.awardTitle自己集合性ナノ水圏の理解とモルフォロジー制御ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons