ダウンロード数: 39
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
s41467-024-47754-y.pdf | 4.09 MB | Adobe PDF | 見る/開く |
タイトル: | Automatic detection of methane emissions in multispectral satellite imagery using a vision transformer |
著者: | Rouet-Leduc, Bertrand Hulbert, Claudia |
キーワード: | Climate-change mitigation Environmental impact |
発行日: | 14-May-2024 |
出版者: | Springer Nature |
誌名: | Nature Communications |
巻: | 15 |
論文番号: | 3801 |
抄録: | Curbing methane emissions is among the most effective actions that can be taken to slow down global warming. However, monitoring emissions remains challenging, as detection methods have a limited quantification completeness due to trade-offs that have to be made between coverage, resolution, and detection accuracy. Here we show that deep learning can overcome the trade-off in terms of spectral resolution that comes with multi-spectral satellite data, resulting in a methane detection tool with global coverage and high temporal and spatial resolution. We compare our detections with airborne methane measurement campaigns, which suggests that our method can detect methane point sources in Sentinel-2 data down to plumes of 0.01 km², corresponding to 200 to 300 kg CH₄ h⁻¹ sources. Our model shows an order of magnitude improvement over the state-of-the-art, providing a significant step towards the automated, high resolution detection of methane emissions at a global scale, every few days. |
記述: | Check and check-methane: Global methane emissions automatically detected in satellite imagery using AI.京都大学プレスリリース. 2024-05-15. |
著作権等: | © The Author(s) 2024 This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. |
URI: | http://hdl.handle.net/2433/289125 |
DOI(出版社版): | 10.1038/s41467-024-47754-y |
PubMed ID: | 38744827 |
関連リンク: | https://www.kyoto-u.ac.jp/en/research-news/2024-05-15 |
出現コレクション: | 学術雑誌掲載論文等 |
このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス