このアイテムのアクセス数: 49

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2263-06.pdf14.35 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorSuzuki, Sakieen
dc.contributor.alternative鈴木, 咲衣ja
dc.date.accessioned2024-10-03T06:15:07Z-
dc.date.available2024-10-03T06:15:07Z-
dc.date.issued2023-08-
dc.identifier.urihttp://hdl.handle.net/2433/289729-
dc.description.abstractWe have presented three types of reconstructions of the universal invariant. The original construction associates the universal R-matrix or its inverse with each crossing of link diagrams, while the reconstructions associate the S-tensor or its inverse with each ideal tetrahedron of 3-manifolds. The first reconstruction (Theorem 3.1) uses slice diagrams of tangles and provides a topological realization of Kashaev’s embedding at each crossing of tangles. However, it cannot be extended to be an invariant of 3-manifolds. By introducing integral normal o-graphs, we can represent framed 3-manifolds. In particular, for closed framed 3-manifolds with a vanishing first Betti number, we establish a one-to-one correspondence (Theorem 4.1). This allows us to construct an invariant of closed framed 3-manifolds (Theorem 5.3). Taking the framing structure into account, in the context of the universal invariant, we provide two alternative reconstructions (Theorems 6.2 and 6.3) using integral normal o-graphs. This means that the invariant Z extends the universal invariant in a three dimensional manner. We anticipate that our framework will provide a new approach to studying quantum invariants in a three-dimensional context.en
dc.language.isoeng-
dc.publisher京都大学数理解析研究所ja
dc.publisher.alternativeResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.subject.ndc410-
dc.titleQuantum invariants based on ideal triangulations (Intelligence of Low-dimensional Topology)en
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAN00061013-
dc.identifier.jtitle数理解析研究所講究録ja
dc.identifier.volume2263-
dc.identifier.spage48-
dc.identifier.epage67-
dc.textversionpublisher-
dc.sortkey06-
dc.addressDepartment of Mathematical and Computing Science, School of Computing, Tokyo Institute of Technologyen
dc.address.alternative東京工業大学ja
dcterms.accessRightsopen access-
datacite.awardNumber19H01788-
datacite.awardNumber21H04428-
datacite.awardNumber19K21830-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-19H01788/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-21H04428/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-19K21830/-
dc.identifier.pissn1880-2818-
dc.identifier.jtitle-alternativeRIMS Kokyurokuen
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitleグラフィクスとカンドル理論の観点からの4次元トポロジーの研究ja
jpcoar.awardTitle3次元双曲多様体上の量子トポロジーja
jpcoar.awardTitleゲージ理論に関連する3次元双曲多様体の不変量ja
出現コレクション:2263 Intelligence of Low-dimensional Topology

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。