このアイテムのアクセス数: 49
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2263-06.pdf | 14.35 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Suzuki, Sakie | en |
dc.contributor.alternative | 鈴木, 咲衣 | ja |
dc.date.accessioned | 2024-10-03T06:15:07Z | - |
dc.date.available | 2024-10-03T06:15:07Z | - |
dc.date.issued | 2023-08 | - |
dc.identifier.uri | http://hdl.handle.net/2433/289729 | - |
dc.description.abstract | We have presented three types of reconstructions of the universal invariant. The original construction associates the universal R-matrix or its inverse with each crossing of link diagrams, while the reconstructions associate the S-tensor or its inverse with each ideal tetrahedron of 3-manifolds. The first reconstruction (Theorem 3.1) uses slice diagrams of tangles and provides a topological realization of Kashaev’s embedding at each crossing of tangles. However, it cannot be extended to be an invariant of 3-manifolds. By introducing integral normal o-graphs, we can represent framed 3-manifolds. In particular, for closed framed 3-manifolds with a vanishing first Betti number, we establish a one-to-one correspondence (Theorem 4.1). This allows us to construct an invariant of closed framed 3-manifolds (Theorem 5.3). Taking the framing structure into account, in the context of the universal invariant, we provide two alternative reconstructions (Theorems 6.2 and 6.3) using integral normal o-graphs. This means that the invariant Z extends the universal invariant in a three dimensional manner. We anticipate that our framework will provide a new approach to studying quantum invariants in a three-dimensional context. | en |
dc.language.iso | eng | - |
dc.publisher | 京都大学数理解析研究所 | ja |
dc.publisher.alternative | Research Institute for Mathematical Sciences, Kyoto University | en |
dc.subject.ndc | 410 | - |
dc.title | Quantum invariants based on ideal triangulations (Intelligence of Low-dimensional Topology) | en |
dc.type | departmental bulletin paper | - |
dc.type.niitype | Departmental Bulletin Paper | - |
dc.identifier.ncid | AN00061013 | - |
dc.identifier.jtitle | 数理解析研究所講究録 | ja |
dc.identifier.volume | 2263 | - |
dc.identifier.spage | 48 | - |
dc.identifier.epage | 67 | - |
dc.textversion | publisher | - |
dc.sortkey | 06 | - |
dc.address | Department of Mathematical and Computing Science, School of Computing, Tokyo Institute of Technology | en |
dc.address.alternative | 東京工業大学 | ja |
dcterms.accessRights | open access | - |
datacite.awardNumber | 19H01788 | - |
datacite.awardNumber | 21H04428 | - |
datacite.awardNumber | 19K21830 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-19H01788/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-21H04428/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-19K21830/ | - |
dc.identifier.pissn | 1880-2818 | - |
dc.identifier.jtitle-alternative | RIMS Kokyuroku | en |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | グラフィクスとカンドル理論の観点からの4次元トポロジーの研究 | ja |
jpcoar.awardTitle | 3次元双曲多様体上の量子トポロジー | ja |
jpcoar.awardTitle | ゲージ理論に関連する3次元双曲多様体の不変量 | ja |
出現コレクション: | 2263 Intelligence of Low-dimensional Topology |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。