このアイテムのアクセス数: 61
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
s12864-023-09645-2.pdf | 4.82 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Kurosawa, Ryo | en |
dc.contributor.author | Iida, Kei | en |
dc.contributor.author | Ajiro, Masahiko | en |
dc.contributor.author | Awaya, Tomonari | en |
dc.contributor.author | Yamada, Mamiko | en |
dc.contributor.author | Kosaki, Kenjiro | en |
dc.contributor.author | Hagiwara, Masatoshi | en |
dc.contributor.alternative | 黒澤, 凌 | ja |
dc.contributor.alternative | 飯田, 慶 | ja |
dc.contributor.alternative | 網代, 将彦 | ja |
dc.contributor.alternative | 粟屋, 智就 | ja |
dc.contributor.alternative | 萩原, 正敏 | ja |
dc.date.accessioned | 2024-10-16T07:06:44Z | - |
dc.date.available | 2024-10-16T07:06:44Z | - |
dc.date.issued | 2023-10-10 | - |
dc.identifier.uri | http://hdl.handle.net/2433/289906 | - |
dc.description.abstract | [Background] Deep-intronic variants that alter RNA splicing were ineffectively evaluated in the search for the cause of genetic diseases. Determination of such pathogenic variants from a vast number of deep-intronic variants (approximately 1, 500, 000 variants per individual) represents a technical challenge to researchers. Thus, we developed a Pathogenicity predictor for Deep-Intronic Variants causing Aberrant Splicing (PDIVAS) to easily detect pathogenic deep-intronic variants. [Results] PDIVAS was trained on an ensemble machine-learning algorithm to classify pathogenic and benign variants in a curated dataset. The dataset consists of manually curated pathogenic splice-altering variants (SAVs) and commonly observed benign variants within deep introns. Splicing features and a splicing constraint metric were used to maximize the predictive sensitivity and specificity, respectively. PDIVAS showed an average precision of 0.92 and a maximum MCC of 0.88 in classifying these variants, which were the best of the previous predictors. When PDIVAS was applied to genome sequencing analysis on a threshold with 95% sensitivity for reported pathogenic SAVs, an average of 27 pathogenic candidates were extracted per individual. Furthermore, the causative variants in simulated patient genomes were more efficiently prioritized than the previous predictors. [Conclusions] Incorporating PDIVAS into variant interpretation pipelines will enable efficient detection of disease-causing deep-intronic SAVs and contribute to improving the diagnostic yield. | en |
dc.language.iso | eng | - |
dc.publisher | Springer Nature | en |
dc.publisher | BMC | en |
dc.rights | © The Author(s) 2023. | en |
dc.rights | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | Pathogenicity prediction | en |
dc.subject | RNA splicing | en |
dc.subject | Deep intron | en |
dc.subject | Non-coding region | en |
dc.subject | Genomics | en |
dc.subject | Machine learning | en |
dc.subject | Variant interpretation | en |
dc.title | PDIVAS: Pathogenicity predictor for Deep-Intronic Variants causing Aberrant Splicing | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | BMC Genomics | en |
dc.identifier.volume | 24 | - |
dc.relation.doi | 10.1186/s12864-023-09645-2 | - |
dc.textversion | publisher | - |
dc.identifier.artnum | 601 | - |
dc.identifier.pmid | 37817060 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 22KJ2023 | - |
datacite.awardNumber | 21H05042 | - |
datacite.awardNumber | 19K07367 | - |
datacite.awardNumber | 21K15873 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-22KJ2023/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21H05042/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19K07367/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21K15873/ | - |
dc.identifier.eissn | 1471-2164 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | ゲノム情報からスプライシング異常を細胞種別に予測する深層学習モデルの構築 | ja |
jpcoar.awardTitle | 遺伝病におけるCLKを介した偽エクソン制御機構の解析RNA結合タンパク質の病的相分離の統合的理解 | ja |
jpcoar.awardTitle | 遺伝病におけるCLKを介した偽エクソン制御機構の解析 | ja |
jpcoar.awardTitle | 末梢血トランスクリプトームの外れ値解析:エクソーム解析の限界を超えるアプローチ | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス