このアイテムのアクセス数: 61

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s12864-023-09645-2.pdf4.82 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorKurosawa, Ryoen
dc.contributor.authorIida, Keien
dc.contributor.authorAjiro, Masahikoen
dc.contributor.authorAwaya, Tomonarien
dc.contributor.authorYamada, Mamikoen
dc.contributor.authorKosaki, Kenjiroen
dc.contributor.authorHagiwara, Masatoshien
dc.contributor.alternative黒澤, 凌ja
dc.contributor.alternative飯田, 慶ja
dc.contributor.alternative網代, 将彦ja
dc.contributor.alternative粟屋, 智就ja
dc.contributor.alternative萩原, 正敏ja
dc.date.accessioned2024-10-16T07:06:44Z-
dc.date.available2024-10-16T07:06:44Z-
dc.date.issued2023-10-10-
dc.identifier.urihttp://hdl.handle.net/2433/289906-
dc.description.abstract[Background] Deep-intronic variants that alter RNA splicing were ineffectively evaluated in the search for the cause of genetic diseases. Determination of such pathogenic variants from a vast number of deep-intronic variants (approximately 1, 500, 000 variants per individual) represents a technical challenge to researchers. Thus, we developed a Pathogenicity predictor for Deep-Intronic Variants causing Aberrant Splicing (PDIVAS) to easily detect pathogenic deep-intronic variants. [Results] PDIVAS was trained on an ensemble machine-learning algorithm to classify pathogenic and benign variants in a curated dataset. The dataset consists of manually curated pathogenic splice-altering variants (SAVs) and commonly observed benign variants within deep introns. Splicing features and a splicing constraint metric were used to maximize the predictive sensitivity and specificity, respectively. PDIVAS showed an average precision of 0.92 and a maximum MCC of 0.88 in classifying these variants, which were the best of the previous predictors. When PDIVAS was applied to genome sequencing analysis on a threshold with 95% sensitivity for reported pathogenic SAVs, an average of 27 pathogenic candidates were extracted per individual. Furthermore, the causative variants in simulated patient genomes were more efficiently prioritized than the previous predictors. [Conclusions] Incorporating PDIVAS into variant interpretation pipelines will enable efficient detection of disease-causing deep-intronic SAVs and contribute to improving the diagnostic yield.en
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.publisherBMCen
dc.rights© The Author(s) 2023.en
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectPathogenicity predictionen
dc.subjectRNA splicingen
dc.subjectDeep intronen
dc.subjectNon-coding regionen
dc.subjectGenomicsen
dc.subjectMachine learningen
dc.subjectVariant interpretationen
dc.titlePDIVAS: Pathogenicity predictor for Deep-Intronic Variants causing Aberrant Splicingen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleBMC Genomicsen
dc.identifier.volume24-
dc.relation.doi10.1186/s12864-023-09645-2-
dc.textversionpublisher-
dc.identifier.artnum601-
dc.identifier.pmid37817060-
dcterms.accessRightsopen access-
datacite.awardNumber22KJ2023-
datacite.awardNumber21H05042-
datacite.awardNumber19K07367-
datacite.awardNumber21K15873-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-22KJ2023/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21H05042/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19K07367/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21K15873/-
dc.identifier.eissn1471-2164-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitleゲノム情報からスプライシング異常を細胞種別に予測する深層学習モデルの構築ja
jpcoar.awardTitle遺伝病におけるCLKを介した偽エクソン制御機構の解析RNA結合タンパク質の病的相分離の統合的理解ja
jpcoar.awardTitle遺伝病におけるCLKを介した偽エクソン制御機構の解析ja
jpcoar.awardTitle末梢血トランスクリプトームの外れ値解析:エクソーム解析の限界を超えるアプローチja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons