このアイテムのアクセス数: 79
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
s12890-024-03002-z.pdf | 2.24 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Shiraishi, Yusuke | en |
dc.contributor.author | Tanabe, Naoya | en |
dc.contributor.author | Sakamoto, Ryo | en |
dc.contributor.author | Maetani, Tomoki | en |
dc.contributor.author | Kaji, Shizuo | en |
dc.contributor.author | Shima, Hiroshi | en |
dc.contributor.author | Terada, Satoru | en |
dc.contributor.author | Terada, Kunihiko | en |
dc.contributor.author | Ikezoe, Kohei | en |
dc.contributor.author | Tanizawa, Kiminobu | en |
dc.contributor.author | Oguma, Tsuyoshi | en |
dc.contributor.author | Handa, Tomohiro | en |
dc.contributor.author | Sato, Susumu | en |
dc.contributor.author | Muro, Shigeo | en |
dc.contributor.author | Hirai, Toyohiro | en |
dc.contributor.alternative | 白石, 祐介 | ja |
dc.contributor.alternative | 田辺, 直也 | ja |
dc.contributor.alternative | 坂本, 亮 | ja |
dc.contributor.alternative | 前谷, 知毅 | ja |
dc.contributor.alternative | 島, 寛 | ja |
dc.contributor.alternative | 寺田, 悟 | ja |
dc.contributor.alternative | 池添, 浩平 | ja |
dc.contributor.alternative | 谷澤, 公伸 | ja |
dc.contributor.alternative | 小熊, 毅 | ja |
dc.contributor.alternative | 半田, 知宏 | ja |
dc.contributor.alternative | 佐藤, 晋 | ja |
dc.contributor.alternative | 平井, 豊博 | ja |
dc.date.accessioned | 2024-11-07T07:29:48Z | - |
dc.date.available | 2024-11-07T07:29:48Z | - |
dc.date.issued | 2024-04-23 | - |
dc.identifier.uri | http://hdl.handle.net/2433/290189 | - |
dc.description.abstract | Background: Interstitial lung abnormalities (ILAs) on CT may affect the clinical outcomes in patients with chronic obstructive pulmonary disease (COPD), but their quantification remains unestablished. This study examined whether artificial intelligence (AI)-based segmentation could be applied to identify ILAs using two COPD cohorts. Methods: ILAs were diagnosed visually based on the Fleischner Society definition. Using an AI-based method, ground-glass opacities, reticulations, and honeycombing were segmented, and their volumes were summed to obtain the percentage ratio of interstitial lung disease-associated volume to total lung volume (ILDvol%). The optimal ILDvol% threshold for ILA detection was determined in cross-sectional data of the discovery and validation cohorts. The 5-year longitudinal changes in ILDvol% were calculated in discovery cohort patients who underwent baseline and follow-up CT scans. Results: ILAs were found in 32 (14%) and 15 (10%) patients with COPD in the discovery (n = 234) and validation (n = 153) cohorts, respectively. ILDvol% was higher in patients with ILAs than in those without ILA in both cohorts. The optimal ILDvol% threshold in the discovery cohort was 1.203%, and good sensitivity and specificity (93.3% and 76.3%) were confirmed in the validation cohort. 124 patients took follow-up CT scan during 5 ± 1 years. 8 out of 124 patients (7%) developed ILAs. In a multivariable model, an increase in ILDvol% was associated with ILA development after adjusting for age, sex, BMI, and smoking exposure. Conclusion: AI-based CT quantification of ILDvol% may be a reproducible method for identifying and monitoring ILAs in patients with COPD. | en |
dc.language.iso | eng | - |
dc.publisher | Springer Nature | en |
dc.publisher | BMC | en |
dc.rights | © The Author(s) 2024. | en |
dc.rights | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | Artificial intelligence | en |
dc.subject | CT | en |
dc.subject | COPD | en |
dc.subject | Interstitial lung abnormality | en |
dc.title | Longitudinal assessment of interstitial lung abnormalities on CT in patients with COPD using artificial intelligence-based segmentation: a prospective observational study | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | BMC Pulmonary Medicine | en |
dc.identifier.volume | 24 | - |
dc.relation.doi | 10.1186/s12890-024-03002-z | - |
dc.textversion | publisher | - |
dc.identifier.artnum | 200 | - |
dc.identifier.pmid | 38654252 | - |
dcterms.accessRights | open access | - |
dc.identifier.eissn | 1471-2466 | - |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス