このアイテムのアクセス数: 61
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2265-04.pdf | 1.33 MB | Adobe PDF | 見る/開く |
タイトル: | Self-injective inverse semigroups (Group, Ring, Language and Related Areas in Computer Science) |
著者: | Shoji, Kunitaka |
著者名の別形: | 庄司, 邦孝 |
発行日: | Sep-2023 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2265 |
開始ページ: | 20 |
終了ページ: | 23 |
抄録: | In the paper [l] and [2], it was shown that the injective hull of a semilattice is an 𝙎-distributive completion 𝘾(𝙎) in which 𝙎 is large. For an inverse semigroup 𝙎, B.Schein [3] gave a method of construction of 𝙎-distributive completion 𝘾(𝙎) of 𝙎. By a similar way of the construction of completions, B. Schein [5] described the injective hull of an inverse semigroup as the set 𝙁(𝙎) of all filters of 𝙎. B.Schein [4] showed that an inverse semigroup 𝙎 is self-injective if and only if 𝙎 is a 𝙎-distribute completion and 𝙀-reflexive. By making use of Schen's comletion, K.Shoji [6] showed that for any 𝙀-reflexive inverse semigroup 𝙎, there exists an inverse semigroup 𝙏 such that (1) 𝙎 is a subsemigroup of 𝙏, (2) 𝙏is the injective hull of 𝙎 as a right 𝙎-set and (3) 𝙏 is a self-injective semigroup. In this paper, we shall show that 𝙁(𝙎) is not always closed under set products. |
URI: | http://hdl.handle.net/2433/290206 |
出現コレクション: | 2265 群・環・言語と計算機科学の周辺領域 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。