このアイテムのアクセス数: 55

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2265-11.pdf4.8 MBAdobe PDF見る/開く
タイトル: Partition of an Eulerian circuit search problem for the complete graph of order 15 (Group, Ring, Language and Related Areas in Computer Science)
著者: Jimbo, Shuji
著者名の別形: 神保, 秀司
キーワード: Eulerian circuit
computer experiment
search space
distributed processing
発行日: Sep-2023
出版者: 京都大学数理解析研究所
誌名: 数理解析研究所講究録
巻: 2265
開始ページ: 73
終了ページ: 77
抄録: For odd integers 𝓷 greater than or equal to 15, it is known how to construct an Eulerian circuit of the complete graph of order 𝓷 whose shortest subcycle length is 𝓷-4. Furthermore, the author and others have proved that there is no Eulerian circuit of the complete graph of order 𝓷 whose shortest subcycle length is greater than 𝓷-2. The author and others conjecture that, for every odd integer 𝓷 greater than or equal to 15, there is no Eulerian circuit of the complete graph of order 𝓷 whose shortest subcycle length is 𝓷 -3. As part of the proof of the conjecture, the author and others aim to prove that there is no Eulerian circuit of a complete graph of order 15 whose shortest subcycle length is 12. Currently, we expect that the conjecture above for 𝓷 = 15 can be proved through large-scale distributed processing. For distributed processing to be effective, the size of each divided subproblem must be small enough to fit into the main memory. In this report, we describe the methods used to achieve this goal and discuss the possibility of applying these methods to complete the proof.
URI: http://hdl.handle.net/2433/290213
出現コレクション:2265 群・環・言語と計算機科学の周辺領域

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。