このアイテムのアクセス数: 81

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.ijpharm.2024.123873.pdf9.14 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorIwata, Hiroakien
dc.contributor.authorHayashi, Yoshihiroen
dc.contributor.authorKoyama, Takutoen
dc.contributor.authorHasegawa, Akien
dc.contributor.authorOhgi, Kosukeen
dc.contributor.authorKobayashi, Ippeien
dc.contributor.authorOkuno, Yasushien
dc.contributor.alternative岩田, 浩明ja
dc.contributor.alternative林, 祥弘ja
dc.contributor.alternative小山, 拓豊ja
dc.contributor.alternative長谷川, 亜樹ja
dc.contributor.alternative奥野, 恭史ja
dc.date.accessioned2024-11-12T07:50:58Z-
dc.date.available2024-11-12T07:50:58Z-
dc.date.issued2024-03-25-
dc.identifier.urihttp://hdl.handle.net/2433/290292-
dc.description.abstractScanning electron microscopy (SEM) images are the most widely used tool for evaluating particle morphology; however, quantitative evaluation using SEM images is time-consuming and often neglected. In this study, we aimed to extract features related to particle morphology of pharmaceutical excipients from SEM images using a convolutional neural network (CNN). SEM images of 67 excipients were acquired and used as models. A classification CNN model of the excipients was constructed based on the SEM images. Further, features were extracted from the middle layer of this CNN model, and the data was compressed to two dimensions using uniform manifold approximation and projection. Lastly, hierarchical clustering analysis (HCA) was performed to categorize the excipients into several clusters and identify similarities among the samples. The classification CNN model showed high accuracy, allowing each excipient to be identified with a high degree of accuracy. HCA revealed that the 67 excipients were classified into seven clusters. Additionally, the particle morphologies of excipients belonging to the same cluster were found to be very similar. These results suggest that CNN models are useful tools for extracting information and identifying similarities among the particle morphologies of excipients.en
dc.language.isoeng-
dc.publisherElsevier BVen
dc.rights© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license.en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectConvolutional neural networksen
dc.subjectMachine learningen
dc.subjectClusteringen
dc.subjectScanning electron microscopeen
dc.subjectRaw materials databaseen
dc.subjectPowderen
dc.titleFeature extraction of particle morphologies of pharmaceutical excipients from scanning electron microscope images using convolutional neural networksen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleInternational Journal of Pharmaceuticsen
dc.identifier.volume653-
dc.relation.doi10.1016/j.ijpharm.2024.123873-
dc.textversionpublisher-
dc.identifier.artnum123873-
dc.identifier.pmid38336179-
dcterms.accessRightsopen access-
dc.identifier.eissn0378-5173-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons