このアイテムのアクセス数: 56

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
jfr3.13017.pdf4.76 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorKhaniya, Manojen
dc.contributor.authorTachikawa, Yasutoen
dc.contributor.authorSayama, Takahiroen
dc.contributor.alternative立川, 康人ja
dc.contributor.alternative佐山, 敬洋ja
dc.date.accessioned2024-11-20T02:49:02Z-
dc.date.available2024-11-20T02:49:02Z-
dc.date.issued2024-12-
dc.identifier.urihttp://hdl.handle.net/2433/290455-
dc.description.abstractAlthough conceptually attractive, the use of ensemble data assimilation methods, such as the ensemble Kalman filter (EnKF), can be constrained by intensive computational requirements. In such cases, the ensemble optimal interpolation scheme (EnOI), which works on a single model run instead of ensemble evolution, may offer a sub-optimal alternative. This study explores different approaches of dynamic covariance matrix generation from predefined state vector repositories for assimilating synthetic water level observations with the EnOI scheme into a distributed rainfall-runoff-inundation model. Repositories are first created by storing open loop state vectors from the simulation of past flood events. The vectors are later sampled during the assimilation step, based on their closeness to the model forecast (calculated using vector norm). Results suggest that the dynamic EnOI scheme is inferior to the EnKF, but can improve upon the deterministic simulation depending on the sampling approach and the repository used. Observations can also be used for sampling to increase the background spread when the system noise is large. A richer repository is required to reduce analysis degradation, but increases the computation cost. This can be resolved by using a sliced repository consisting of only the vectors with norm close to the model forecast.en
dc.language.isoeng-
dc.publisherWileyen
dc.rights© 2024 The Author(s). Journal of Flood Risk Management published by Chartered Institution of Water and Environmental Management and John Wiley & Sons Ltd.en
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited.en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectdata assimilationen
dc.subjectdynamic covariance matrixen
dc.subjectensemble optimal interpolationen
dc.subjecthydrologyen
dc.subjectrainfall-runoff-inundation modelen
dc.subjectrepositoryen
dc.titleAssimilating water level observations with the ensemble optimal interpolation scheme into a rainfall-runoff-inundation model: A repository-based dynamic covariance matrix generation approachen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleJournal of Flood Risk Managementen
dc.identifier.volume17-
dc.identifier.issue4-
dc.relation.doi10.1111/jfr3.13017-
dc.textversionpublisher-
dc.identifier.artnume13017-
dcterms.accessRightsopen access-
dc.identifier.pissn1753-318X-
dc.identifier.eissn1753-318X-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons