このアイテムのアクセス数: 108

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
OJCAS.2024.3482469.pdf3.02 MBAdobe PDF見る/開く
タイトル: Double MAC on a Cell: A 22-nm 8T-SRAM-Based Analog In-Memory Accelerator for Binary/Ternary Neural Networks Featuring Split Wordline
著者: Tagata, Hiroto
Sato, Takashi  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-1577-8259 (unconfirmed)
Awano, Hiromitsu  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0001-9288-471X (unconfirmed)
著者名の別形: 田形, 寛斗
佐藤, 高史
粟野, 皓光
キーワード: Quantized neural network (QNN)
analog computing-in-memory (CIM)
static random access memory (SRAM)
voltage-mode accumulation
multiply-and-accumulation (MAC)
発行日: 2024
出版者: Institute of Electrical and Electronics Engineers (IEEE)
誌名: IEEE Open Journal of Circuits and Systems
巻: 5
開始ページ: 328
終了ページ: 340
抄録: This paper proposes a novel 8T-SRAM based computing-in-memory (CIM) accelerator for the Binary/Ternary neural networks. The proposed split dual-port 8T-SRAM cell has two input ports, simultaneously performing two binary multiply-and-accumulate (MAC) operations on left and right bitlines. This approach enables a twofold increase in throughput without significantly increasing area or power consumption, since the area overhead for doubling throughput is only two additional WL wires compared to the conventional 8T-SRAM. In addition, the proposed circuit supports binary and ternary activation input, allowing flexible adjustment of high energy efficiency and high inference accuracy depending on the application. The proposed SRAM macro consists of a 128×128 SRAM array that outputs the MAC operation results of 96 binary/ternary inputs and 96×128 binary weights as 1-5 bit digital values. The proposed circuit performance was evaluated by post-layout simulation with the 22-nm process layout of the overall CIM macro. The proposed circuit is capable of high-speed operation at 1 GHz. It achieves a maximum area efficiency of 3320 TOPS/mm2, which is 3.4× higher compared to existing research with a reasonable energy efficiency of 1471 TOPS/W. The simulated inference accuracies of the proposed circuit are 96.45%/97.67% for MNIST dataset with binary/ternary MLP model, and 86.32%/88.56% for CIFAR-10 dataset with binary/ternary VGG-like CNN model.
著作権等: © 2024 The Authors.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
URI: http://hdl.handle.net/2433/291061
DOI(出版社版): 10.1109/OJCAS.2024.3482469
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons