このアイテムのアクセス数: 17

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2268-05.pdf25.08 MBAdobe PDF見る/開く
タイトル: TOWARDS HYPERSEMITORIC SYSTEMS
著者: Henriksen, Tobias Våge
Hohloch, Sonja
Martynchuk, Nikolay N
発行日: Nov-2023
出版者: 京都大学数理解析研究所
誌名: 数理解析研究所講究録
巻: 2268
開始ページ: 56
終了ページ: 81
抄録: This survey gives a short and comprehensive introduction to a class of finitedimensional integrable systems known as hypersemitoric systems, recently introduced by Hohloch and Palmer in connection with the solution of the problem how to extend Hamiltonian circle actions on symplectic 4-manifolds to integrable systems with ‛nice' singularities. The quadratic spherical pendulum, the Euler and Lagrange tops (for generic values of the Casimirs), coupled-angular momenta, and the coupled spin oscillator system are all examples of hypersemitoric systems. Hypersemitoric systems are a natural generalization of so-called semitoric systems (introduced by Vũ Ngọc) which in turn generalize toric systems. Speaking in terms of bifurcations, semitoric systems are ‛toric systems with/after supercritical Hamiltonian-Hopf bifurcations'. Hypersemitoric systems are 'semitoric systems with, among others, subcritical Hamiltonian-Hopf bifurcations'. Whereas the symplectic geometry and spectral theory of toric and semitoric sytems is by now very well developed, the theory of hypersemitoric systems is still forming its shape. This short survey introduces the reader to this developing theory by presenting the necessary notions and results as well as its connections to other areas of mathematics and mathematical physic.
URI: http://hdl.handle.net/2433/291148
関連リンク: http://www.math.ritsumei.ac.jp/~dtarama/GSDE2022/index.html
出現コレクション:2268 幾何構造と微分方程式 --対称性・特異性及び量子化の視点から--

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。