このアイテムのアクセス数: 49
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
ANCRiSST_2024_32.pdf | 554.06 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Li, Dan | en |
dc.contributor.author | Zhou, Jiajun | en |
dc.contributor.author | He, Xinhao | en |
dc.date.accessioned | 2025-01-20T02:05:49Z | - |
dc.date.available | 2025-01-20T02:05:49Z | - |
dc.date.issued | 2024-07 | - |
dc.identifier.uri | http://hdl.handle.net/2433/291272 | - |
dc.description | 15th International Workshop on Advanced Smart Materials and Smart Structures Technology (ANCRiSST 2024) to be held in July 2024 at Kyoto University, Japan. | en |
dc.description.abstract | Finite element (FE) models are essential for accurately predicting structural behavior under various loading conditions in structural engineering. This research investigates a derivative-free method for updating FE models in both time and frequency domains. The FE model updating problem is formulated as a stochastic dynamic system with embedded parameter-to-data mapping, which allows for the estimation of unknown model parameters. The unscented Kalman method is utilized to solve these systems and update the parameters effectively. This approach also tackles specific challenges in FE model updating, such as constraints implementation and sparsity regularization. Constraints are integrated to ensure that estimated parameters remain within predefined limits. Additionally, sparsity regularization is implemented to enhance interpretability and accuracy, particularly in applications such as damage identification. Numerical investigations validate the proposed approach, confirming its effectiveness and reliability in precisely estimating unknown parameters for structural engineering FE models. | en |
dc.language.iso | eng | - |
dc.publisher | Asian-Pacific Network of Centers for Research in Smart Structures Technology (ANCRiSST) | en |
dc.publisher | Infrastructure Innovation Engineering, Department of Civil and Earth Resources Engineering, Kyoto University | en |
dc.subject | Finite element model updating | en |
dc.subject | Unscented Kalman filter | en |
dc.subject | Constraint implementation | en |
dc.subject | Sparsity regularization | en |
dc.title | Derivative-free approach for time and frequency domain finite element model updating | en |
dc.type | conference paper | - |
dc.type.niitype | Conference Paper | - |
dc.identifier.jtitle | Proceedings of the 15th International Workshop on Advanced Smart Materials and Smart Structures Technology (ANCRiSST 2024) | en |
dc.identifier.spage | 1 | - |
dc.identifier.epage | 8 | - |
dc.textversion | author | - |
dc.identifier.artnum | 32 | - |
dc.sortkey | 21 | - |
dc.address | School of Civil Engineering, Southeast University | en |
dc.address | School of Civil Engineering, Southeast University | en |
dc.address | Graduate School of Engineering, Department of Civil and Environmental Engineering, Tohoku University | en |
dc.relation.url | http://infra.kuciv.kyoto-u.ac.jp/ANCRISST2024/ | - |
dc.identifier.selfDOI | 10.14989/ancrisst_2024_32 | - |
dcterms.accessRights | open access | - |
jpcoar.conferenceName | International Workshop on Advanced Smart Materials and Smart Structures Technology (ANCRiSST) | en |
jpcoar.conferenceSequence | 15 | - |
jpcoar.conferenceSponsor | Asian-Pacific Network of Centers for Research in Smart Structures Technology (ANCRiSST); Department of Civil and Earth Resources Engineering, Kyoto University | en |
jpcoar.conferenceDate | July 10-11, 2024 | en |
jpcoar.conferenceStartDate | 2024-07-10 | - |
jpcoar.conferenceEndDate | 2024-07-11 | - |
jpcoar.conferenceVenue | Campus Plaza Kyoto | en |
jpcoar.conferencePlace | Kyoto | en |
jpcoar.conferenceCountry | JPN | - |
出現コレクション: | Proceedings of the 15th International Workshop on Advanced Smart Materials and Smart Structures Technology (ANCRiSST 2024) |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。