このアイテムのアクセス数: 24

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
journal.pone.0303002.pdf1.86 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorSasagasako, Tomokien
dc.contributor.authorUeda, Akihikoen
dc.contributor.authorMineharu, Yoheien
dc.contributor.authorMochizuki, Yusukeen
dc.contributor.authorDoi, Souichiroen
dc.contributor.authorPark, Silsuen
dc.contributor.authorTerada, Yukinorien
dc.contributor.authorSano, Noritakaen
dc.contributor.authorTanji, Masahiroen
dc.contributor.authorArakawa, Yoshikien
dc.contributor.authorOkuno, Yasushien
dc.contributor.alternative笹ヶ迫, 知紀ja
dc.contributor.alternative植田, 彰彦ja
dc.contributor.alternative峰晴, 陽平ja
dc.contributor.alternative望月, 勇佑ja
dc.contributor.alternative土井, 聡一郎ja
dc.contributor.alternative朴, 実樹ja
dc.contributor.alternative寺田, 行範ja
dc.contributor.alternative佐野, 徳隆ja
dc.contributor.alternative丹治, 正大ja
dc.contributor.alternative荒川, 芳輝ja
dc.contributor.alternative奥野, 恭史ja
dc.date.accessioned2025-01-23T07:43:26Z-
dc.date.available2025-01-23T07:43:26Z-
dc.date.issued2024-11-11-
dc.identifier.urihttp://hdl.handle.net/2433/291315-
dc.description.abstractBackground and purpose: Glioblastoma is a highly aggressive brain tumor with limited survival that poses challenges in predicting patient outcomes. The Karnofsky Performance Status (KPS) score is a valuable tool for assessing patient functionality and contributes to the stratification of patients with poor prognoses. This study aimed to develop a 6-month postoperative KPS prediction model by combining clinical data with deep learning-based image features from pre- and postoperative MRI scans, offering enhanced personalized care for glioblastoma patients. Materials and methods: Using 1, 476 MRI datasets from the Brain Tumor Segmentation Challenge 2020 public database, we pretrained two variational autoencoders (VAEs). Imaging features from the latent spaces of the VAEs were used for KPS prediction. Neural network-based KPS prediction models were developed to predict scores below 70 at 6 months postoperatively. In this retrospective single-center analysis, we incorporated clinical parameters and pre- and postoperative MRI images from 150 newly diagnosed IDH wild-type glioblastoma, divided into training (100 patients) and test (50 patients) sets. In training set, the performance of these models was evaluated using the area under the curve (AUC), calculated through fivefold cross-validation repeated 10 times. The final evaluation of the developed models assessed in the test set. Results: Among the 150 patients, 61 had 6-month postoperative KPS scores below 70 and 89 scored 70 or higher. We developed three models: a clinical-based model, an MRI-based model, and a multimodal model that incorporated both clinical parameters and MRI features. In the training set, the mean AUC was 0.785±0.051 for the multimodal model, which was significantly higher than the AUCs of the clinical-based model (0.716±0.059, P = 0.038) using only clinical parameters and the MRI-based model (0.651±0.028, P<0.001) using only MRI features. In the test set, the multimodal model achieved an AUC of 0.810, outperforming the clinical-based (0.670) and MRI-based (0.650) models. Conclusion: The integration of MRI features extracted from VAEs with clinical parameters in the multimodal model substantially enhanced KPS prediction performance. This approach has the potential to improve prognostic prediction, paving the way for more personalized and effective treatments for patients with glioblastoma.en
dc.language.isoeng-
dc.publisherPublic Library of Science (PLoS)en
dc.rights© 2024 Sasagasako et al.en
dc.rightsThis is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectMagnetic resonance imagingen
dc.subjectForecastingen
dc.subjectGlioblastoma multiformeen
dc.subjectCancers and neoplasmsen
dc.subjectNeural networksen
dc.subjectNeuroimagingen
dc.subjectSurgical and invasive medical proceduresen
dc.subjectPrognosisen
dc.titlePostoperative Karnofsky performance status prediction in patients with IDH wild-type glioblastoma: A multimodal approach integrating clinical and deep imaging featuresen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitlePLOS ONEen
dc.identifier.volume19-
dc.identifier.issue11-
dc.relation.doi10.1371/journal.pone.0303002-
dc.textversionpublisher-
dc.identifier.artnume0303002-
dc.identifier.pmid39527541-
dcterms.accessRightsopen access-
dc.identifier.eissn1932-6203-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons