このアイテムのアクセス数: 41

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2277-06.pdf7.44 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorJang, Jiwoongen
dc.contributor.authorKwon, Dohyunen
dc.contributor.authorMitake, Hiroyoshien
dc.contributor.authorTran, Hung Ven
dc.contributor.alternative三竹, 大寿ja
dc.date.accessioned2025-01-27T07:02:39Z-
dc.date.available2025-01-27T07:02:39Z-
dc.date.issued2024-02-
dc.identifier.urihttp://hdl.handle.net/2433/291442-
dc.description.abstractHere, we study a level-set forced mean curvature flow with the homo-geneous Neumann boundary condition. We show that the solution is Lipschitz in time and locally Lipschitz in space. Then, under an additional condition on the forcing term, we prove that the solution is globally Lipschitz continuous, and we obtain the large time behavior of the solution in this setting. Also, we give an example to demonstrate that the additional condition on the forcing term is sharp, and without it, the solution might not be globally Lipschitz continuous.en
dc.language.isoeng-
dc.publisher京都大学数理解析研究所ja
dc.publisher.alternativeResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.subject35B40en
dc.subject49L25en
dc.subject53E10en
dc.subject35B45en
dc.subject35K20en
dc.subject35K93en
dc.subjectLevel-set forced mean curvature flowsen
dc.subjectNeumann boundary problemen
dc.subjectglobal Lipschitz regularityen
dc.subjectlarge time behavioren
dc.subjectthe large time profileen
dc.subject.ndc410-
dc.titleON LIPSCHITZ REGULARITY FOR LEVEL-SET FORCED MEAN CURVATURE FLOW UNDER THE NEUMANN BOUNDARY CONDITION (Innovation of the theory for evolution equations: developments via cross-disciplinary studies)en
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAN00061013-
dc.identifier.jtitle数理解析研究所講究録ja
dc.identifier.volume2277-
dc.identifier.spage70-
dc.identifier.epage78-
dc.textversionpublisher-
dc.sortkey06-
dc.addressDepartment of Mathematics, University of Wisconsin Madisonen
dc.addressDepartment of Mathematics, University of Wisconsin Madisonen
dc.addressGraduate School of Mathematical Sciences, University of Tokyoen
dc.addressDepartment of Mathematics, University of Wisconsin Madisonen
dc.address.alternative東京大学ja
dc.relation.urlhttps://sites.google.com/view/rims22evol-
dcterms.accessRightsopen access-
datacite.awardNumber19K03580-
datacite.awardNumber19H00639-
datacite.awardNumber17KK0093-
datacite.awardNumber20H01816-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19K03580/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H00639/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-17KK0093/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20H01816/-
dc.identifier.pissn1880-2818-
dc.identifier.jtitle-alternativeRIMS Kokyurokuen
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle制御問題,力学系,界面運動に現れる漸近問題への粘性解的手法の研究-
jpcoar.awardTitle非線形拡散と動的特異構造の解析-
jpcoar.awardTitle粘性解理論,弱KAM理論の考究とハミルトン・ヤコビ方程式の漸近解析への応用-
jpcoar.awardTitle反応拡散系とその特異極限系に現れるパターンダイナミクスの数理解析-
出現コレクション:2277 発展方程式論の革新: 異分野との融合がもたらす理論の深化

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。