このアイテムのアクセス数: 59

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.dib.2024.110877.pdf1.29 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorGaribay Rubio, Carlos Rodrigoen
dc.contributor.authorYamori, Katsuyaen
dc.contributor.authorNakano, Gentaen
dc.contributor.authorPeralta Gutiérrez, Astrid Renneéen
dc.contributor.authorChainé, Silvia Moralesen
dc.contributor.authorGarcía, Rebeca Roblesen
dc.contributor.authorLanda-Ramírez, Edgaren
dc.contributor.authorEstrada, Alexis Bojorgeen
dc.contributor.authorMaldonado, Alejandro Boschen
dc.contributor.authorTejadilla Orozco, Diana Irisen
dc.contributor.alternative矢守, 克也ja
dc.contributor.alternative中野, 元太ja
dc.date.accessioned2025-01-28T02:45:17Z-
dc.date.available2025-01-28T02:45:17Z-
dc.date.issued2024-12-
dc.identifier.urihttp://hdl.handle.net/2433/291456-
dc.description.abstractThe prevalence of mental health problems constitutes an open challenge for modern societies, particularly for low and middle-income countries with wide gaps in mental health support. With this in mind, five datasets were analyzed to track mental health trends in Mexico City during the pandemic's first year. This included 33, 234 responses to an online mental health risk questionnaire, 349, 202 emergency calls, and city epidemiological, mobility, and online trend data. The COVID-19 mental health risk questionnaire collects information on socioeconomic status, health conditions, bereavement, lockdown status, and symptoms of acute stress, sadness, avoidance, distancing, anger, and anxiety, along with binge drinking and abuse experiences. The lifeline service dataset includes daily call statistics, such as total, connected, and abandoned calls, average quit time, wait time, and call duration. Epidemiological, mobility, and trend data provide a daily overview of the city's situation. The integration of the datasets, as well as the preprocessing, optimization, and machine learning algorithms applied to them, evidence the usefulness of a combined analytic approach and the high reuse potential of the data set, particularly as a machine learning training set for evaluating and predicting anxiety, depression, and post-traumatic stress disorder, as well as general psychological support needs and possible system loads.en
dc.language.isoeng-
dc.publisherElsevier BVen
dc.rights© 2024 The Author(s).en
dc.rightsPublished by Elsevier Inc.en
dc.rightsThis is an open access article under the CC BY-NC-ND license.en
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectDisaster recovery curveen
dc.subjectPsychological response in disastersen
dc.subjectMental health support systemsen
dc.subjectStress response in emergenciesen
dc.subjectAcute stress responseen
dc.subjectEarthquake early warningen
dc.subjectPandemic mental health effectsen
dc.titleMachine learning-ready mental health datasets for evaluating psychological effects and system needs in Mexico city during the first year of the COVID-19 pandemicen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleData in Briefen
dc.identifier.volume57-
dc.relation.doi10.1016/j.dib.2024.110877-
dc.textversionpublisher-
dc.identifier.artnum110877-
dc.identifier.pmid39290429-
dcterms.accessRightsopen access-
dc.identifier.eissn2352-3409-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons