このアイテムのアクセス数: 18

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.ifacol.2023.10.887.pdf1.89 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorBanno, Ikumien
dc.contributor.authorAzuma, Shun-ichien
dc.contributor.authorAriizumi, Ryoen
dc.contributor.authorAsai, Toruen
dc.contributor.authorImura, Jun-ichien
dc.contributor.alternative坂野, 幾海ja
dc.contributor.alternative東, 俊一ja
dc.date.accessioned2025-02-03T02:40:05Z-
dc.date.available2025-02-03T02:40:05Z-
dc.date.issued2023-
dc.identifier.urihttp://hdl.handle.net/2433/291569-
dc.description22nd IFAC World Congress, Yokohama, Japan, July 9-14, 2023en
dc.description.abstractIn the field of network systems, controllability maximization has become more important in terms of efficient control. When an exact model of a network system is not available, data-driven approaches are useful. In this paper, we establish a framework for maximizing the controllability of networked systems by using off-line data. In particular, the maximization with respect to the network topology of the network system is addressed. First, we develop a data-driven method for solving the Lyapunov equation which describes the properties of a system different from the system associated with the data. Second, based on this result, we derive a data-driven method for computing the gradient of a controllability measure (the trace of the controllability Gramian) with respect to the network topology of the network system. Finally, we show that our gradient computation can be used for controllability maximization based on off-line data. The effectiveness of the data-driven methods is numerically demonstrated.en
dc.language.isoeng-
dc.publisherElsevier BVen
dc.rights© 2023 The Authors.en
dc.rightsThis is an open access article under the CC BY-NC-ND licenseen
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectData-based controlen
dc.subjectoptimizationen
dc.subjectcontrollabilityen
dc.subjectLyapunov equationsen
dc.subjectprojected gradient descenten
dc.subjectnetwork systemsen
dc.titleControllability Maximization of Network Systems: Gradient Computation Based on Offline Dataen
dc.typeconference paper-
dc.type.niitypeConference Paper-
dc.identifier.jtitle22nd IFAC World Congress 2023 (IFAC2023)en
dc.identifier.volume56-
dc.identifier.issue2-
dc.identifier.spage10138-
dc.identifier.epage10143-
dc.relation.doi10.1016/j.ifacol.2023.10.887-
dc.textversionpublisher-
dcterms.accessRightsopen access-
dc.identifier.eissn2405-8963-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons