このアイテムのアクセス数: 69

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.cma.2024.117678.pdf6.61 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorHan, Jikeen
dc.contributor.authorFuruta, Kozoen
dc.contributor.authorKondoh, Tsuguoen
dc.contributor.authorIzui, Kazuhiroen
dc.contributor.authorNishiwaki, Shinjien
dc.contributor.authorTerada, Kenjiroen
dc.contributor.alternative韓, 霽珂ja
dc.contributor.alternative古田, 幸三ja
dc.contributor.alternative近藤, 継男ja
dc.contributor.alternative泉井, 一浩ja
dc.contributor.alternative西脇, 眞二ja
dc.date.accessioned2025-02-06T05:57:12Z-
dc.date.available2025-02-06T05:57:12Z-
dc.date.issued2025-02-15-
dc.identifier.urihttp://hdl.handle.net/2433/291663-
dc.description.abstractThis study is dedicated to the formulation of finite strain nonlocal elastoplastic topology optimization. In the primal problem, we employ the standard hyperelastic constitutive law and the Voce hardening laws to describe the elastoplastic response, the latter of which is enhanced by the micromorphic regularization to address the mesh-dependent issue of the finite element method or mesh-based methods. For the optimization problem, the objective function accommodates multiple objectives by writing it as the summation of several sub-functions. The continuous adjoint method is adopted for formulating the adjoint problem; therefore, the corresponding governing equations are written in a continuous manner, like the primal problem. Thus, these equations are independent of employed discretization methods and can be implemented into various simulation methodologies. In addition, the derived sensitivity is substituted into the reaction–diffusion equation to realize the update of the design variable. Both single-material (ersatz and genuine materials) and two-material (matrix and inclusion materials) topology optimizations are presented to demonstrate the promise and performance of the formulation. In particular, we discuss what values of material parameters should be given to the ersatz material, how the material nonlinearity affects the optimization result, and how the optimization trend alters by giving different values of weights of the objective function.en
dc.language.isoeng-
dc.publisherElsevier BVen
dc.rights© 2024 The Authors. Published by Elsevier B.V.en
dc.rightsThis is an open access article under the CC BY-NC-ND license.en
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectTopology optimizationen
dc.subjectPlasticityen
dc.subjectNonlocal approachen
dc.subjectAdjoint methoden
dc.subjectFinite strainen
dc.titleTopology optimization for nonlocal elastoplasticity at finite strainen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleComputer Methods in Applied Mechanics and Engineeringen
dc.identifier.volume435-
dc.relation.doi10.1016/j.cma.2024.117678-
dc.textversionpublisher-
dc.identifier.artnum117678-
dcterms.accessRightsopen access-
dc.identifier.pissn0045-7825-
dc.identifier.eissn1879-2138-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons