このアイテムのアクセス数: 36
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2279-09.pdf | 11.62 MB | Adobe PDF | 見る/開く |
タイトル: | An extension of the Floquet-Bloch theory to nilpotent groups and its applications (Recent Developments in Representation Theory and Related Topics) |
著者: | Katsuda, Atsushi |
著者名の別形: | 勝田, 篤 |
キーワード: | 58J50 58J37 58J35 30F99 Floquet-Bloch theory Heisenberg group Nilpotent group Asymptotic expansions |
発行日: | Apr-2024 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2279 |
開始ページ: | 96 |
終了ページ: | 110 |
抄録: | The Floquet-Bloch theory is a popular tool for the investigation of materials with periodic structures. For example, one can show that the spectrum of periodic Schrödinger operators have band structures. In the context of this note, this theory was applied to the following problems in the case of abelian extensions: (1) A geometric analogue of the Chebotarev density theorem for prime closed geodesics in a compact Riemannian manifold with negative curvature (2) A long time asymptotic expansion of the heat kernels of covering manifolds of compact Riemannian manifolds. In this note, we shall develop our version of non-commutative Floquet-Bloch theory and give applications to these problems for nilpotent groups with emphasis on the second topic. Moreover, as a by-product, we give another mathematical explanation of the semi-classical asymptotic expansion formula for the Harper operator due to Wilkinson, which is originally done by Helffer-Sjöstrand. |
URI: | http://hdl.handle.net/2433/292610 |
関連リンク: | https://sites.google.com/view/hyougenron2023/%E3%83%9B%E3%83%BC%E3%83%A0 |
出現コレクション: | 2279 表現論とその周辺分野における最近の進展 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。