このアイテムのアクセス数: 18

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s13321-025-00967-9.pdf2.04 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorCozac, Romeoen
dc.contributor.authorHasic, Harisen
dc.contributor.authorChoong, Jun Jinen
dc.contributor.authorRichard, Vincenten
dc.contributor.authorBeheshti, Loicen
dc.contributor.authorFroehlich, Cyrilleen
dc.contributor.authorKoyama, Takutoen
dc.contributor.authorMatsumoto, Shigeyukien
dc.contributor.authorKojima, Ryosukeen
dc.contributor.authorIwata, Hiroakien
dc.contributor.authorHasegawa, Akien
dc.contributor.authorOtsuka, Takaoen
dc.contributor.authorOkuno, Yasushien
dc.date.accessioned2025-03-24T06:07:35Z-
dc.date.available2025-03-24T06:07:35Z-
dc.date.issued2025-02-25-
dc.identifier.urihttp://hdl.handle.net/2433/292637-
dc.description.abstractMachine learning is quickly becoming integral to drug discovery pipelines, particularly quantitative structure-activity relationship (QSAR) and absorption, distribution, metabolism, and excretion (ADME) tasks. Graph Convolutional Network (GCN) models have proven especially promising due to their inherent ability to model molecular structures using graph-based representations. However, maximizing the potential of such models in practice is challenging, as companies prioritize data privacy and security over collaboration initiatives to improve model performance and robustness. kMoL is an open-source machine learning library with integrated federated learning capabilities developed to address such challenges. Its key features include state-of-the-art model architectures, Bayesian optimization, explainability, and federated learning mechanisms. It demonstrates extensive customization possibilities, advanced security features, straightforward implementation of user-specific models, and high adaptability to custom datasets without additional programming requirements. kMoL is evaluated through locally trained benchmark settings and distributed federated learning experiments using various datasets to assess the features and flexibility of the library, as well as the ability to facilitate fast and practical experimentation. Additionally, results of these experiments provide further insights into the performance trade-offs associated with federated learning strategies, presenting valuable guidance for deploying machine learning models in a privacy-preserving manner within drug discovery pipelines.en
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.subjectMachine learningen
dc.subjectFederated learningen
dc.subjectDrug discoveryen
dc.subjectDeep learningen
dc.subjectGraph convolutional networksen
dc.subjectDistributed learningen
dc.subjectChemoinformaticsen
dc.titlekMoL: an open-source machine and federated learning library for drug discoveryen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleJournal of Cheminformaticsen
dc.identifier.volume17-
dc.identifier.issue1-
dc.relation.doi10.1186/s13321-025-00967-9-
dc.textversionpublisher-
dc.identifier.artnum22-
dc.identifier.pmid40001146-
dcterms.accessRightsopen access-
dc.identifier.eissn1758-2946-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。