このアイテムのアクセス数: 21
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2282-09.pdf | 10.06 MB | Adobe PDF | 見る/開く |
タイトル: | TWO EXAMPLES OF WELL-POSEDNESS OF WEAK SOLUTIONS FOR QUASILINEAR EVOLUTIONARY PARTIAL DIFFERENTIAL EQUATIONS (Mathematical Analysis in Fluid and Gas Dynamics) |
著者: | Liu, Tai-Ping |
発行日: | May-2024 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2282 |
開始ページ: | 94 |
終了ページ: | 103 |
抄録: | To establish a well-posedness theory for weak solutions of quasilinear evolutionary partial differential equations is a difficult task. There is little control over the time evolution of weak solutions constructed by compactness methods. The purpose of the present article is to explain the construction procedures of weak solutions for hyperbolic and viscous conservation laws. These procedures allow for the establishment of well-posedness theory. For system of hyperbolic conservation laws, the weak solutions are constructed using the Riemann solutions as building blocks. For the compressible Navier-Stokes equations, one uses the Green's function approach to construct the weak solutions by solving integral equations. Within these construction procedures, the traditional Hadamard well-posedness criteria are satisfied, and the regularity and time-asymptotic behaviors of the weak solution can be studied. |
URI: | http://hdl.handle.net/2433/292914 |
関連リンク: | https://www2.kobe-u.ac.jp/~ueda/RIMS/index.html |
出現コレクション: | 2282 流体と気体の数学解析 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。