このアイテムのアクセス数: 22

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
JEMS_1323.pdf701.6 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorKashiwara, Masakien
dc.contributor.authorKim, Myunghoen
dc.contributor.authorOh, Se-jinen
dc.contributor.authorPark, Euiyongen
dc.contributor.alternative柏原, 正樹ja
dc.contributor.transcriptionカシワラ, マサキja-Kana
dc.date.accessioned2025-04-07T08:05:05Z-
dc.date.available2025-04-07T08:05:05Z-
dc.date.issued2023-
dc.identifier.urihttp://hdl.handle.net/2433/293076-
dc.description.abstractLet 𝘜'q(𝖌) be a quantum affine algebra of arbitrary type and let 𝒞𝖌⁰ be Hernandez-Leclerc’s category. We can associate the quantum affine Schur–Weyl duality functor 𝓕𝓓 to a duality datum 𝓓 in 𝒞𝖌⁰. In this paper, we introduce the notion of a strong (complete) duality datum 𝓓 and prove that, when 𝓓 is strong, the induced duality functor 𝓕𝓓 sends simple modules to simple modules and preserves the invariants Λ, Λ˜ and Λ∞ introduced by the authors. We next define the reflections 𝒮ₖ and 𝒮ₖ⁻¹ acting on strong duality data 𝓓. We prove that if 𝓓 is a strong (resp. complete) duality datum, then 𝒮ₖ(𝓓) and 𝒮ₖ⁻¹(𝓓) are also strong (resp. complete) duality data. This allows us to make new strong (resp. complete) duality data by applying the reflections 𝒮ₖ and 𝒮ₖ⁻¹ from known strong (resp. complete) duality data. We finally introduce the notion of affine cuspidal modules in 𝒞𝖌⁰ by using the duality functor 𝓕𝓓, and develop the cuspidal module theory for quantum affine algebras similar to the quiver Hecke algebra case. When 𝓓 is complete, we show that all simple modules in 𝒞𝖌⁰ can be constructed as the heads of ordered tensor products of affine cuspidal modules. We further prove that the ordered tensor products of affine cuspidal modules have the unitriangularity property. This generalizes the classical simple module construction using ordered tensor products of fundamental modules.en
dc.language.isoeng-
dc.publisherEMS Pressen
dc.rights©2023 European Mathematical Societyen
dc.rightsPublished by EMS Press and licensed under a CC BY 4.0 licenseen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectAffine cuspidal modulesen
dc.subjectquantum affine Schur–Weyl dualityen
dc.subjectHernandez–Leclerc categoryen
dc.subjectquantum affine algebraen
dc.subjectquiver Hecke algebraen
dc.subjectPBW theoryen
dc.titlePBW theory for quantum affine algebrasen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleJournal of the European Mathematical Societyen
dc.identifier.volume26-
dc.identifier.issue7-
dc.identifier.spage2679-
dc.identifier.epage2743-
dc.relation.doi10.4171/JEMS/1323-
dc.textversionpublisher-
dc.addressKyoto University Institute for Advanced Study; Research Institute for Mathematical Sciences, Kyoto University; Korea Institute for Advanced Studyen
dc.address.alternative京都大学高等教育院; 京都大学数理解析研究所; 고등과학원ja
dcterms.accessRightsopen access-
datacite.awardNumber23K20206-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-23K20206/-
dc.identifier.pissn1435-9855-
dc.identifier.eissn1435-9863-
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle表現論と代数解析学ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons