このアイテムのアクセス数: 4

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
adsu.202300354.pdf1.48 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorTeramoto, Yoshikunien
dc.contributor.authorIto, Takumien
dc.contributor.authorYamamoto, Chihiroen
dc.contributor.authorTakano, Toshiyukien
dc.contributor.authorOhki, Hironarien
dc.contributor.alternative寺本, 好邦ja
dc.contributor.alternative髙野, 俊幸ja
dc.date.accessioned2025-04-16T06:47:18Z-
dc.date.available2025-04-16T06:47:18Z-
dc.date.issued2024-02-
dc.identifier.urihttp://hdl.handle.net/2433/293372-
dc.description.abstractThis study presents an approach for nondestructive detection of inapparent deterioration in waterborne acrylic coatings (containing cellulose nanofibers (CNFs)) for wood by using mid-infrared spectroscopy and machine learning. The method evaluates films that mimic coatings before and after 500 h of accelerated weathering, equivalent to roughly 1 year of outdoor exposure. No noticeable transformation in film appearance is evident with a spectrophotometer following the accelerated weathering. Chemiluminescence analysis indicates oxidative degradation predominantly in the acrylic resin, an impact that the CNFs seem to mitigate. Whereas attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy commonly identifies chemical changes in visibly degraded coatings, it does not clearly discern prior, inapparent deterioration. In this context, machine learning algorithms (such as k-nearest neighbors, decision tree, random forest (RF), and support vector machine (SVM)) categorize these nuanced changes by using the absorbance from 400 to 4000 cm⁻¹ as explanatory variables. The SVM model exhibits the highest predictive accuracy, and the RF recognizes crucial variables in some wavenumber zones. This approach has the potential for enhancing recoating schedules, cutting costs, and encouraging sustainable use of wood.en
dc.language.isoeng-
dc.publisherWileyen
dc.rights© 2023 The Authors. Advanced Sustainable Systems published by Wiley-VCH GmbHen
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectaccelerated weatheringen
dc.subjectcellulose nanofibersen
dc.subjectinapparent deteriorationen
dc.subjectmachine learningen
dc.subjectmid-infrared spectroscopyen
dc.subjectnondestructive detectionsen
dc.subjectwaterborne acrylic wood coatingen
dc.titleMid-Infrared Spectroscopy and Machine Learning for Nondestructive Detection of Inapparent Deterioration in Acrylic Waterborne Coatings for Wooden
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleAdvanced Sustainable Systemsen
dc.identifier.volume8-
dc.identifier.issue2-
dc.relation.doi10.1002/adsu.202300354-
dc.textversionpublisher-
dc.identifier.artnum2300354-
dcterms.accessRightsopen access-
dc.identifier.pissn2366-7486-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons