このアイテムのアクセス数: 12
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
bjh.18737.pdf | 1.79 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Mora, Damián | en |
dc.contributor.author | Mateo, Jorge | en |
dc.contributor.author | Nieto, José A. | en |
dc.contributor.author | Bikdeli, Behnood | en |
dc.contributor.author | Yamashita, Yugo | en |
dc.contributor.author | Barco, Stefano | en |
dc.contributor.author | Jimenez, David | en |
dc.contributor.author | Demelo-Rodriguez, Pablo | en |
dc.contributor.author | Rosa, Vladimir | en |
dc.contributor.author | Yoo, Hugo Hyung Bok | en |
dc.contributor.author | Sadeghipour, Parham | en |
dc.contributor.author | Monreal, Manuel | en |
dc.contributor.alternative | 山下, 侑吾 | ja |
dc.date.accessioned | 2025-04-17T00:25:52Z | - |
dc.date.available | 2025-04-17T00:25:52Z | - |
dc.date.issued | 2023-06 | - |
dc.identifier.uri | http://hdl.handle.net/2433/293386 | - |
dc.description.abstract | Predictive tools for major bleeding (MB) using machine learning (ML) might be advantageous over traditional methods. We used data from the Registro Informatizado de Enfermedad TromboEmbólica (RIETE) to develop ML algorithms to identify patients with venous thromboembolism (VTE) at increased risk of MB during the first 3 months of anticoagulation. A total of 55 baseline variables were used as predictors. New data prospectively collected from the RIETE were used for further validation. The RIETE and VTE-BLEED scores were used for comparisons. External validation was performed with the COMMAND-VTE database. Learning was carried out with data from 49 587 patients, of whom 873 (1.8%) had MB. The best performing ML method was XGBoost. In the prospective validation cohort the sensitivity, specificity, positive predictive value and F1 score were: 33.2%, 93%, 10%, and 15.4% respectively. F1 value for the RIETE and VTE-BLEED scores were 8.6% and 6.4% respectively. In the external validation cohort the metrics were 10.3%, 87.6%, 3.5% and 5.2% respectively. In that cohort, the F1 value for the RIETE score was 17.3% and for the VTE-BLEED score 9.75%. The performance of the XGBoost algorithm was better than that from the RIETE and VTE-BLEED scores only in the prospective validation cohort, but not in the external validation cohort. | en |
dc.language.iso | eng | - |
dc.publisher | Wiley | en |
dc.rights | © 2023 The Authors. British Journal of Haematology published by British Society for Haematology and John Wiley & Sons Ltd. | en |
dc.rights | This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
dc.subject | haemorrhage | en |
dc.subject | machine learning | en |
dc.subject | outcomes | en |
dc.subject | pulmonary embolism | en |
dc.subject | venous thrombosis | en |
dc.title | Machine learning to predict major bleeding during anticoagulation for venous thromboembolism: possibilities and limitations | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | British Journal of Haematology | en |
dc.identifier.volume | 201 | - |
dc.identifier.issue | 5 | - |
dc.identifier.spage | 971 | - |
dc.identifier.epage | 981 | - |
dc.relation.doi | 10.1111/bjh.18737 | - |
dc.textversion | publisher | - |
dc.identifier.pmid | 36942630 | - |
dcterms.accessRights | open access | - |
dc.identifier.pissn | 0007-1048 | - |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス