このアイテムのアクセス数: 12

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
bjh.18737.pdf1.79 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorMora, Damiánen
dc.contributor.authorMateo, Jorgeen
dc.contributor.authorNieto, José A.en
dc.contributor.authorBikdeli, Behnooden
dc.contributor.authorYamashita, Yugoen
dc.contributor.authorBarco, Stefanoen
dc.contributor.authorJimenez, Daviden
dc.contributor.authorDemelo-Rodriguez, Pabloen
dc.contributor.authorRosa, Vladimiren
dc.contributor.authorYoo, Hugo Hyung Boken
dc.contributor.authorSadeghipour, Parhamen
dc.contributor.authorMonreal, Manuelen
dc.contributor.alternative山下, 侑吾ja
dc.date.accessioned2025-04-17T00:25:52Z-
dc.date.available2025-04-17T00:25:52Z-
dc.date.issued2023-06-
dc.identifier.urihttp://hdl.handle.net/2433/293386-
dc.description.abstractPredictive tools for major bleeding (MB) using machine learning (ML) might be advantageous over traditional methods. We used data from the Registro Informatizado de Enfermedad TromboEmbólica (RIETE) to develop ML algorithms to identify patients with venous thromboembolism (VTE) at increased risk of MB during the first 3 months of anticoagulation. A total of 55 baseline variables were used as predictors. New data prospectively collected from the RIETE were used for further validation. The RIETE and VTE-BLEED scores were used for comparisons. External validation was performed with the COMMAND-VTE database. Learning was carried out with data from 49 587 patients, of whom 873 (1.8%) had MB. The best performing ML method was XGBoost. In the prospective validation cohort the sensitivity, specificity, positive predictive value and F1 score were: 33.2%, 93%, 10%, and 15.4% respectively. F1 value for the RIETE and VTE-BLEED scores were 8.6% and 6.4% respectively. In the external validation cohort the metrics were 10.3%, 87.6%, 3.5% and 5.2% respectively. In that cohort, the F1 value for the RIETE score was 17.3% and for the VTE-BLEED score 9.75%. The performance of the XGBoost algorithm was better than that from the RIETE and VTE-BLEED scores only in the prospective validation cohort, but not in the external validation cohort.en
dc.language.isoeng-
dc.publisherWileyen
dc.rights© 2023 The Authors. British Journal of Haematology published by British Society for Haematology and John Wiley & Sons Ltd.en
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.en
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjecthaemorrhageen
dc.subjectmachine learningen
dc.subjectoutcomesen
dc.subjectpulmonary embolismen
dc.subjectvenous thrombosisen
dc.titleMachine learning to predict major bleeding during anticoagulation for venous thromboembolism: possibilities and limitationsen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleBritish Journal of Haematologyen
dc.identifier.volume201-
dc.identifier.issue5-
dc.identifier.spage971-
dc.identifier.epage981-
dc.relation.doi10.1111/bjh.18737-
dc.textversionpublisher-
dc.identifier.pmid36942630-
dcterms.accessRightsopen access-
dc.identifier.pissn0007-1048-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons