このアイテムのアクセス数: 16

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
admi.202300864.pdf3.6 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorLi, Shanglinen
dc.contributor.authorChen, Zhaoyueen
dc.contributor.authorYamamoto, Kentaroen
dc.contributor.authorWatanabe, Toshikien
dc.contributor.authorUchimoto, Yoshiharuen
dc.contributor.authorMori, Yukien
dc.contributor.authorInoue, Genen
dc.contributor.authorOhuchi, Kazuyaen
dc.contributor.authorInagaki, Satoshien
dc.contributor.authorUeno, Kazuhideen
dc.contributor.authorDokko, Kaoruen
dc.contributor.authorWatanabe, Masayoshien
dc.contributor.alternative渡邊, 稔樹ja
dc.contributor.alternative内本, 喜晴ja
dc.date.accessioned2025-04-18T00:55:32Z-
dc.date.available2025-04-18T00:55:32Z-
dc.date.issued2024-05-5-
dc.identifier.urihttp://hdl.handle.net/2433/293430-
dc.description.abstractLi–S batteries have attracted attention as the next-generation secondary batteries. While substantial progress is made in understanding Li–S chemistry at a fundamental level, only a limited number of studies are dedicated to achieving high energy density at the practical pouch cell level. The challenge lies in attaining high-energy-density Li–S batteries under harsh conditions, which involve a minimal amount of electrolyte and a relatively high areal S-loading cathode. This discrepancy creates a substantial gap between fundamental material research and comprehensive cell-level investigations. In this study, it is investigated how the morphology and properties of two carbon materials, namely Ketjen black (KB) and mesoporous carbon nano-dendrites (MCND), influence the composite cathode architecture and determine the performance of Li–S batteries. Unlike KB, MCND allows for a higher sulfur-loading cathode without evident cracks in the composite cathode. This achievement can be attributed to the high porosity, excellent wettability, and high conductivity exhibited during an identical electrode preparation procedure. Furthermore, large-format Li–S pouch cells incorporating MCND/S cathodes are successfully fabricated. These cells demonstrate an energy density surpassing 250 Wh kg⁻¹ and an initial discharge capacity of 3.7 Ah under challenging conditions (S-loading > 5 mg cm⁻² and E/S < 3.5 µL mg⁻¹).en
dc.language.isoeng-
dc.publisherWileyen
dc.rights© 2023 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH.en
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectcomposite sulfur cathodeen
dc.subjecthigh-energy-density batteryen
dc.subjectlithium–sulfur batteryen
dc.subjectmesoporous carbonen
dc.subjectpouch cellen
dc.titleInfluence of Primary Particle Morphology and Hydrophilicity of Carbon Matrix on Electrode Coating Quality and Performance of Practical High-Energy-Density Li–S Batteriesen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleAdvanced Materials Interfacesen
dc.identifier.volume11-
dc.identifier.issue7-
dc.relation.doi10.1002/admi.202300864-
dc.textversionpublisher-
dc.identifier.artnum2300864-
dc.relation.urlhttps://onlinelibrary.wiley.com/doi/pdf/10.1002/admi.202300864-
dcterms.accessRightsopen access-
dc.identifier.pissn2196-7350-
dc.identifier.eissn2196-7350-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons