このアイテムのアクセス数: 20

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
transjsme.24-00184.pdf3.07 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.author見波, 将ja
dc.contributor.author丸山, 泰明ja
dc.contributor.author阿部, 能将ja
dc.contributor.author仲山, 智裕ja
dc.contributor.author嶋田, 隆広ja
dc.contributor.alternativeMINAMI, Susumuen
dc.contributor.alternativeMARUYAMA, Yasuakien
dc.contributor.alternativeABE, Yoshimasaen
dc.contributor.alternativeNAKAYAMA, Tomohiroen
dc.contributor.alternativeSHIMADA, Takahiroen
dc.date.accessioned2025-04-28T07:09:53Z-
dc.date.available2025-04-28T07:09:53Z-
dc.date.issued2025-
dc.identifier.urihttp://hdl.handle.net/2433/293651-
dc.description.abstractStrain engineering is a crucial approach in the engineering field to optimize various physical properties of materials by applying mechanical strain loading. However, it is extremely challenging to find out the best conditions of strain with unprecedented physical properties in the vast strain space consisting of six components. Here, we developed a technical framework that enables efficient exploration of physical properties in the vast strain space based on machine learning (i.e., artificial neural networks), active learning, and high-throughput first-principles calculation. We demonstrated the active learning technique to successfully and efficiently construct an accurate machine learning model for ferroelectric PbTiO₃ with minimal first-principles datasets (only 3.7% of the vast strain-space). Our machine learning model can accurately predict the nonlinear mechanical deformation and electromechanical response in the three components of normal strain loading. We also carried out strain optimization of piezoelectric response using the machine learning model and found that a large piezoelectric response is five times larger than without strain loading. We showed that the physical property explorer framework constructed in this study makes it possible to optimize strain for various material properties in a vast strain space by calculating only a small number of data points. These results suggest paving the way for constructing nonlinear piezoelectric constitutive equations for novel piezoelectric devices via strain engineering.en
dc.language.isoeng-
dc.publisher日本機械学会ja
dc.publisher.alternativeJapan Society of Mechanical Engineersen
dc.rights© 2025 一般社団法人日本機械学会en
dc.rightsこの記事はクリエイティブ・コモンズ [表示 - 非営利 - 改変禁止 4.0 国際]ライセンスの下に提供されています。en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja-
dc.subjectFerroelectricsen
dc.subjectMachine learningen
dc.subjectPiezoelectric propertiesen
dc.subjectFirst-principles calculationen
dc.subjectHigh-throughput computingen
dc.subjectStrain engineeringen
dc.title能動的機械学習とハイスループット第一原理計算によるデータ駆動型非線形強誘電物性のひずみ最適化ja
dc.title.alternativeFirst-principles based data-driven strain engineering for ferroelectrics via active machine learning: A nonlinear piezoelectric constitutive equationen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitle日本機械学会論文集ja
dc.identifier.volume91-
dc.identifier.issue941-
dc.identifier.spage24-
dc.identifier.epage00184-
dc.relation.doi10.1299/transjsme.24-00184-
dc.textversionpublisher-
dcterms.accessRightsopen access-
dc.identifier.eissn2187-9761-
dc.identifier.jtitle-alternativeTransactions of the JSME (in Japanese)en
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons