このアイテムのアクセス数: 10

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
fms.2022.66.pdf816.71 kBAdobe PDF見る/開く
タイトル: Analytic torsion for log-Enriques surfaces and Borcherds product
著者: Dai, Xianzhe
Yoshikawa, Ken-Ichi  kyouindb  KAKEN_id
著者名の別形: 吉川, 謙一
発行日: 2-Sep-2022
出版者: Cambridge University Press (CUP)
誌名: Forum of Mathematics, Sigma
巻: 10
論文番号: e77
抄録: We introduce a holomorphic torsion invariant of log-Enriques surfaces of index two with cyclic quotient singularities of type ¼(1, 1). The moduli space of such log-Enriques surfaces with 𝘬 singular points is a modular variety of orthogonal type associated with a unimodular lattice of signature (2, 10 − 𝘬). We prove that the invariant, viewed as a function of the modular variety, is given by the Petersson norm of an explicit Borcherds product. We note that this torsion invariant is essentially the BCOV invariant in the complex dimension 2. As a consequence, the BCOV invariant in this case is not a birational invariant, unlike the Calabi-Yau case.
著作権等: © The Author(s), 2022. Published by Cambridge University Press.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
URI: http://hdl.handle.net/2433/293761
DOI(出版社版): 10.1017/fms.2022.66
関連リンク: https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S2050509422000664
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons