このアイテムのアクセス数: 10
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
fms.2022.66.pdf | 816.71 kB | Adobe PDF | 見る/開く |
タイトル: | Analytic torsion for log-Enriques surfaces and Borcherds product |
著者: | Dai, Xianzhe Yoshikawa, Ken-Ichi ![]() ![]() |
著者名の別形: | 吉川, 謙一 |
発行日: | 2-Sep-2022 |
出版者: | Cambridge University Press (CUP) |
誌名: | Forum of Mathematics, Sigma |
巻: | 10 |
論文番号: | e77 |
抄録: | We introduce a holomorphic torsion invariant of log-Enriques surfaces of index two with cyclic quotient singularities of type ¼(1, 1). The moduli space of such log-Enriques surfaces with 𝘬 singular points is a modular variety of orthogonal type associated with a unimodular lattice of signature (2, 10 − 𝘬). We prove that the invariant, viewed as a function of the modular variety, is given by the Petersson norm of an explicit Borcherds product. We note that this torsion invariant is essentially the BCOV invariant in the complex dimension 2. As a consequence, the BCOV invariant in this case is not a birational invariant, unlike the Calabi-Yau case. |
著作権等: | © The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. |
URI: | http://hdl.handle.net/2433/293761 |
DOI(出版社版): | 10.1017/fms.2022.66 |
関連リンク: | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S2050509422000664 |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス