このアイテムのアクセス数: 10
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
PRIMS_59-3-4.pdf | 649.42 kB | Adobe PDF | 見る/開く |
タイトル: | Enhanced Nearby and Vanishing Cycles in Dimension One and Fourier Transform |
著者: | D’Agnolo, Andrea Kashiwara, Masaki |
著者名の別形: | 柏原, 正樹 |
キーワード: | Sato’s specialization and microlocalization Fourier–Laplace transform irregular Riemann–Hilbert correspondence enhanced perverse sheaves nearby and vanishing cycles Stokes filtered local systems |
発行日: | 11-Oct-2023 |
出版者: | European Mathematical Society (EMS) Press |
誌名: | Publications of the Research Institute for Mathematical Sciences |
巻: | 59 |
号: | 3 |
開始ページ: | 543 |
終了ページ: | 570 |
抄録: | Enhanced ind-sheaves provide a suitable framework for the irregular Riemann–Hilbert correspondence. In this paper, we give some precision on nearby and vanishing cycles for enhanced perverse objects in dimension one. As an application, we give a topological proof of the following fact. Let 𝓜 be a holonomic algebraic 𝒟-module on the affine line, and denote by ᴸ𝓜 its Fourier–Laplace transform. For a point a on the affine line, denote by ℓ𝒶 the corresponding linear function on the dual affine line. Then the vanishing cycles of 𝓜 at a are isomorphic to the graded component of degree ℓ𝒶 of the Stokes filtration of ᴸ𝓜 at infinity. |
著作権等: | ©2023 Research Institute for Mathematical Sciences, Kyoto University. This work is licensed under a CC BY 4.0 license. |
URI: | http://hdl.handle.net/2433/293887 |
DOI(出版社版): | 10.4171/PRIMS/59-3-4 |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス