このアイテムのアクセス数: 10

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2284-08.pdf5.87 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorAkahira, Masafumien
dc.contributor.alternative赤平, 昌文ja
dc.date.accessioned2025-05-28T06:33:55Z-
dc.date.available2025-05-28T06:33:55Z-
dc.date.issued2024-05-
dc.identifier.urihttp://hdl.handle.net/2433/294369-
dc.description.abstractFrom the viewpoint of large deviation, the Bahadur efficiency based on the information inequality for the tail probability of estimators is well known in the asymptotic theory of estimation. On the other hand, the large deviation efficiency up to the second order was introduced in Akahira (2006, 2010) from a different viewpoint from the Bahadur efficiency. In this article, from the latter viewpoint, the lower bound for the large deviation probability for asymptotically median unbiased estimators is obtained for flattened distributions in a middle part, which do not belong to an exponential family. The influence of the flat part of distributions on the bound with its relation to the large deviation efficiency is investigated.en
dc.language.isoeng-
dc.publisher京都大学数理解析研究所ja
dc.publisher.alternativeResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.subject.ndc410-
dc.titleLarge deviation behavior of estimators for flattened distributions in a middle part (Probability Models and Statistical Inferences)en
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAN00061013-
dc.identifier.jtitle数理解析研究所講究録ja
dc.identifier.volume2284-
dc.identifier.spage105-
dc.identifier.epage121-
dc.textversionpublisher-
dc.sortkey08-
dc.addressInstitute of Mathematics, University of Tsukubaen
dc.address.alternative筑波大学ja
dcterms.accessRightsopen access-
dc.identifier.pissn1880-2818-
dc.identifier.jtitle-alternativeRIMS Kokyurokuen
出現コレクション:2284 確率モデルと統計的推測

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。