このアイテムのアクセス数: 4

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
tellusa.4089.pdf2.56 MBAdobe PDF見る/開く
タイトル: Flow-Dependent Large-Scale Blending for Limited-Area Ensemble Data Assimilation
著者: Nakashita, Saori  kyouindb  KAKEN_id  orcid https://orcid.org/0009-0002-8522-1250 (unconfirmed)
Enomoto, Takeshi
キーワード: ensemble data assimilation
nestingflow dependency
hierarchical structure
発行日: 2025
出版者: Stockholm University Press
誌名: Tellus A: Dynamic Meteorology and Oceanography
巻: 77
号: 1
開始ページ: 1
終了ページ: 19
抄録: We propose a method of flow-dependent large-scale blending (LSB) method for limited-area model data assimilation (LAM DA). By incorporating the information from the global model (GM), LSB methods alleviate the large-scale degradation caused by limitations in the domain size and observations. Our proposed LSB method (nested EnVar) extends the static variational DA augmented by GM information (nested 3DVar) of previous studies, thus dynamically determining the relative weights of GM information based on the uncertainties in GM. The simultaneous assimilation of GM information by the nested EnVar avoids disturbing the optimal state of DA caused by independent blending. The nested EnVar is compared against the nested 3DVar and background LSB methods in the cycled assimilation experiments using a nested system of chaotic models with a single spatial dimension. We also investigate the impact of flow-dependency on the blended analysis and forecast. All LSB methods reduce the large-scale errors in LAM DA and provide better analyses and forecasts than GM downscaling. When dense and uneven observations are assimilated into the LAM domain, the nested EnVar outperforms the conventional DA and other LSB methods. By dynamically incorporating the GM uncertainty, the nested EnVar improves the analyses and their stability across scales. These results suggest that the nested EnVar is a promising alternative to traditional LSB methods in high-resolution simulations of hierarchical phenomena with high variability.
著作権等: © 2025 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
URI: http://hdl.handle.net/2433/294454
DOI(出版社版): 10.16993/tellusa.4089
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons