このアイテムのアクセス数: 7

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
TCSI.2023.3300899.pdf4.6 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorCheng, Quanen
dc.contributor.authorHuang, Mingqiangen
dc.contributor.authorMan, Changhaien
dc.contributor.authorShen, Aoen
dc.contributor.authorDai, Liuyaoen
dc.contributor.authorYu, Haoen
dc.contributor.authorHashimoto, Masanorien
dc.contributor.alternative程, 全ja
dc.contributor.alternative橋本, 昌宜ja
dc.date.accessioned2025-06-13T05:23:16Z-
dc.date.available2025-06-13T05:23:16Z-
dc.date.issued2023-10-
dc.identifier.urihttp://hdl.handle.net/2433/294650-
dc.description.abstractDeep neural networks (DNNs) in safety-critical applications demand high reliability even when running on edge-computing devices. Recent works on System-on-Chip (SoC) design with state-of-the-art (SOTA) hardware artificial intelligence (AI) accelerators and corresponding multi-bit-width (MBW) convolutional neural network (CNN) generation strategies show that MBW CNNs can effectively explore the trade-off between network accuracy and hardware efficiency. However, reliability has not been considered in such trade-off analysis, even though highly quantized CNNs may elevate the impact of bit flips in the hardware. Also, the reliability of the microcontroller and its interface operating with the AI accelerator are not studied. This work evaluates the reliability of DNN computation in an SoC that includes a processor, SOTA AI accelerator, and NN models highly optimized for computation efficiency using a neural architecture search (NAS) method. Focusing on neutron-induced soft error, which is the primary source of bit-flip errors in a terrestrial environment, we perform fault injection and neutron beam experiments. For these experiments, we prototype the SoC on a flash-based FPGA platform, in which the configuration memory is robust to neutron irradiation. Then, we analyze the experimental data and identify vulnerable components in the system. Furthermore, we evaluate how the SoC running different NAS-optimized MBW LeNet5 networks impact the performance, radiation sensitivity, failure rate of MBW accelerator, and crash rate of the system on the FPGAs. Our results show that instruction and data tightly coupled memory (I/DTCM) are the most vulnerable parts and the control status registers (CSRs) in our accelerator are the second most vulnerable component. Moreover, MBW networks have higher susceptibility to critical errors than single-precision networks, low-precision data are more likely to affect the classification results, and the high bits are more sensitive to faults.en
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.rights© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en
dc.rightsThis is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。en
dc.subjectMulti-bit-widthen
dc.subjectCNNen
dc.subjectacceleratoren
dc.subjectNASen
dc.subjectreliabilityen
dc.subjectFPGAen
dc.subjectSoCen
dc.titleReliability Exploration of System-on-Chip With Multi-Bit-Width Accelerator for Multi-Precision Deep Neural Networksen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleIEEE Transactions on Circuits and Systems I: Regular Papersen
dc.identifier.volume70-
dc.identifier.issue10-
dc.identifier.spage3978-
dc.identifier.epage3991-
dc.relation.doi10.1109/TCSI.2023.3300899-
dc.textversionauthor-
dcterms.accessRightsopen access-
datacite.awardNumber19H05664-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H05664/-
dc.identifier.pissn1549-8328-
dc.identifier.eissn1558-0806-
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitleミューオン起因ソフトエラー評価基盤技術: 実測とシミュレーションに基づく将来予測ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。