Access count of this item: 22454
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
yamaguchi.pdf | 194.49 kB | Adobe PDF | View/Open |
Title: | <特集:モデル> 統計学におけるモデル : 情報量基準の観点から |
Other Titles: | <Special Issue: Models> On Statistical Models : From the Viewpoint of Information Criteria |
Authors: | 山口, 健太郎 ![]() |
Author's alias: | YAMAGUCHI, Kentaro |
Issue Date: | 31-Jan-2008 |
Publisher: | 京都大学文学部科学哲学科学史研究室 |
Journal title: | 科学哲学科学史研究 |
Volume: | 2 |
Start page: | 43 |
End page: | 59 |
Abstract: | Within the framework of statistics, the goodness of statistical models is evaluated by criteria for model selection, such as the Akaike and Bayesian information criteria. Each information criteria is based on likelihoodist’s or Bayesian conception. Here, I analyse the inferences used in the derivation of these criteria, and argue that the goodness, evaluated by the Akaike or Bayesian information criteria reflects frequentist’s conception, which is not explained by likelihoodist or Bayesian. |
DOI: | 10.14989/56989 |
URI: | http://hdl.handle.net/2433/56989 |
Appears in Collections: | 第2号 |

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.