Access count of this item: 22454

Files in This Item:
File Description SizeFormat 
yamaguchi.pdf194.49 kBAdobe PDFView/Open
Title: <特集:モデル> 統計学におけるモデル : 情報量基準の観点から
Other Titles: <Special Issue: Models> On Statistical Models : From the Viewpoint of Information Criteria
Authors: 山口, 健太郎  KAKEN_name
Author's alias: YAMAGUCHI, Kentaro
Issue Date: 31-Jan-2008
Publisher: 京都大学文学部科学哲学科学史研究室
Journal title: 科学哲学科学史研究
Volume: 2
Start page: 43
End page: 59
Abstract: Within the framework of statistics, the goodness of statistical models is evaluated by criteria for model selection, such as the Akaike and Bayesian information criteria. Each information criteria is based on likelihoodist’s or Bayesian conception. Here, I analyse the inferences used in the derivation of these criteria, and argue that the goodness, evaluated by the Akaike or Bayesian information criteria reflects frequentist’s conception, which is not explained by likelihoodist or Bayesian.
DOI: 10.14989/56989
URI: http://hdl.handle.net/2433/56989
Appears in Collections:第2号

Show full item record

Export to RefWorks


Export Format: 


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.