ダウンロード数: 263

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
469.pdf371.59 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorAoki, Kazuoen
dc.contributor.authorCavallaro, Guidoen
dc.contributor.authorMarchioro, Carloen
dc.contributor.authorPulvirenti, Marioen
dc.date.accessioned2009-08-05T05:27:14Z-
dc.date.available2009-08-05T05:27:14Z-
dc.date.issued2008-03-
dc.identifier.issn0764-583X-
dc.identifier.urihttp://hdl.handle.net/2433/84651-
dc.description.abstractWe consider a body immersed in a perfect gas and moving under the action of a constant force. Body and gas are in thermal equilibrium. We assume a stochastic interaction body/medium: when a particle of the medium hits the body, it is absorbed and immediately re-emitted with a Maxwellian distribution. This system gives rise to a microscopic model of friction. We study the approach of the body velocity V(t) to the limiting velocity $V_infty$ and prove that, under suitable smallness assumptions, the approach to equilibrium is begin{displaymath}vert V(t)-V_inftyvertapprox frac{C}{t^{d+1}}, end{displaymath} where d is the dimension of the space, and C is a positive constant. This approach is not exponential, as typical in friction problems, and even slower than for the same problem with elastic collisions.en
dc.language.isoeng-
dc.publisherEDP Sciences, SMAIen
dc.rights© EDP Sciences, SMAI 2008en
dc.subjectkinetic theory of gasesen
dc.subjectBoltzmann equationen
dc.subjectfreemolecular gasen
dc.subjectfriction problemen
dc.subjectapproach to equilibriumen
dc.titleOn the motion of a body in thermal equilibrium immersed in a perfect gasen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.ncidAA1196611X-
dc.identifier.jtitleESAIM: Mathematical Modelling and Numerical Analysisen
dc.identifier.volume42-
dc.identifier.issue2-
dc.identifier.spage263-
dc.identifier.epage275-
dc.relation.doi10.1051/m2an:2008007-
dc.textversionpublisher-
dcterms.accessRightsopen access-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。