ダウンロード数: 238
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
978-3-540-77120-3_9.pdf | 228.7 kB | Adobe PDF | 見る/開く |
タイトル: | Geometric Spanner of Segments (Algorithms and Computation) |
著者: | Yang, Yang Zhu, Yongding Xu, Jinhui Katoh, Naoki |
著者名の別形: | 加藤, 直樹 |
発行日: | 2007 |
出版者: | Springer |
誌名: | Lecture Notes in Computer Science |
巻: | 4385 |
開始ページ: | 75 |
終了ページ: | 87 |
抄録: | Geometric spanner is a fundamental structure in computational geometry and plays an important role in many geometric networks design applications. In this paper, we consider a generalization of the classical geometric spanner problem (called segment spanner): Given a set S of disjoint 2-D segments, find a spanning network G with minimum size so that for any pair of points in S, there exists a path in G with length no more than t times their Euclidean distance. Based on a number of interesting techniques (such as weakly dominating set, strongly dominating set, and interval cover), we present an efficient algorithm to construct the segment spanner. Our approach first identifies a set of Steiner points in S, then construct a point spanner for them. Our algorithm runs in O(|Q| + n 2 logn) time, where Q is the set of Steiner points. We show that Q is an O(1)-approximation in terms of its size when S is relatively “well” separated by a constant. For arbitrary rectilinear segments under L 1 distance, the approximation ratio improves to 2. |
記述: | Algorithms and computation : 18th International Symposium, ISAAC 2007, Sendai, Japan, December 17-19, 2007 : proceedings ; ISAAC 2007 : (Lecture notes in computer science ; 4835) Proc. of ISACC |
著作権等: | The original publication is available at www.springerlink.com. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 This is not the published version. Please cite only the published version. |
URI: | http://hdl.handle.net/2433/84856 |
DOI(出版社版): | 10.1007/978-3-540-77120-3_9 |
出現コレクション: | 学術雑誌掲載論文等 |
このリポジトリに保管されているアイテムはすべて著作権により保護されています。