このアイテムのアクセス数: 976

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
460407.pdf1.11 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.author越智, 士郎ja
dc.contributor.alternativeOchi, Shiroen
dc.contributor.transcriptionオチ, シロウja-Kana
dc.date.accessioned2009-12-07T10:40:34Z-
dc.date.available2009-12-07T10:40:34Z-
dc.date.issued2009-03-31-
dc.identifier.issn0563-8682-
dc.identifier.urihttp://hdl.handle.net/2433/88031-
dc.description.abstractLand use is basic information in regional and rural studies, and remote sensing (RS) is a useful tool for understanding land use and land cover (LULC). High resolution satellite images (HRSI) such as IKONOS and QuickBird have been used in LULC studies for about a decade, and they are nowpopular among RS professionals and nonprofessionals alike. However, classification methods are not standardized for HRSI, whereas supervised/unsupervised classification is commonly applied for middle-resolution satellite images such as Landsat.In this study, the object-oriented classification method for HRSI is discussed in terms of LULC studies. This method has been applied in many scientific studies in the past few years, and it comes equipped with some RS software packages such as Definiens. However, the procedure to make an LULC map from HRSI has yet to be formulated and classification accuracies depend on the operator's skills. The most significant parameter in this method is the scale parameter (SP), which determines the size of the image object. In this study, by changing SPs to the IKONOS image, it was found that the size of the homogeneous image object is influenced by the land cover type; for example, a paddy field has a larger homogeneous object size than land cover types such as residential areas. The result suggests that object-oriented land cover classification methods can be helpful for RS nonprofessionals to classify HRSIs, and the approach provides land use characteristics in the study area by understanding the land cover objects.en
dc.format.mimetypeapplication/pdf-
dc.language.isojpn-
dc.publisher京都大学東南アジア研究所ja
dc.publisher.alternativeCenter for Southeast Asian Studies, Kyoto Universityen
dc.subject土地利用ja
dc.subject土地被覆ja
dc.subjectリモートセンシングja
dc.subject高分解能衛星画像ja
dc.subjectイコノス画像ja
dc.subjectオブジェクト指向分類ja
dc.subjectland useen
dc.subjectland coveren
dc.subjectremote sensingen
dc.subjecthigh resolution satellite imageen
dc.subjectIKONOSen
dc.subjectobjectoriented classificationen
dc.subject.ndc292.3-
dc.title画像オブジェクトに基づく高分解能衛星画像での土地被覆分類手法の検討ja
dc.title.alternativeLand Cover Classification Based on Image Objects for High Resolution Satellite Imageen
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAN00166463-
dc.identifier.jtitle東南アジア研究ja
dc.identifier.volume46-
dc.identifier.issue4-
dc.identifier.spage578-
dc.identifier.epage592-
dc.textversionpublisher-
dc.sortkey07-
dc.address近畿大学農学研究科ja
dc.address.alternativeDepartment of Environmental Management, School of Agriculture, Kinki Universityen
dcterms.accessRightsopen access-
dc.identifier.pissn0563-8682-
dc.identifier.jtitle-alternativeSoutheast Asian Studiesen
出現コレクション:Vol.46 No.4

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。