このアイテムのアクセス数: 645

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
Kanemura_2010_IEEETIP.pdf1.03 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorKanemura, Atsunorien
dc.contributor.authorMaeda, Shin-ichien
dc.contributor.authorIshii, Shinen
dc.contributor.alternative兼村, 厚範ja
dc.date.accessioned2010-08-20T07:58:33Z-
dc.date.available2010-08-20T07:58:33Z-
dc.date.issued2010-06-
dc.identifier.issn1057-7149-
dc.identifier.urihttp://hdl.handle.net/2433/123421-
dc.description.abstractWe propose a framework for expanding a given image using an interpolator that is trained in advance with training data, based on sparse Bayesian estimation for determining the optimal and compact support for efficient image expansion. Experiments on test data show that learned interpolators are compact yet superior to classical ones.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherIEEEen
dc.rights(c) 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.en
dc.subjectautomatic relevance determination (ARD)en
dc.subjectimage expansionen
dc.subjectimage interpolationen
dc.subjectresolution synthesis (RS)en
dc.subjectsparse Bayesian estimationen
dc.subjectvariational estimationen
dc.titleSparse Bayesian learning of filters for efficient image expansionen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.ncidAA10821122-
dc.identifier.jtitleIEEE transactions on image processingen
dc.identifier.volume19-
dc.identifier.issue6-
dc.identifier.spage1480-
dc.identifier.epage1490-
dc.relation.doi10.1109/TIP.2010.2043010-
dc.textversionpublisher-
dc.identifier.pmid20215080-
dcterms.accessRightsopen access-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。