ダウンロード数: 202

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
DP601.pdf201.87 kBAdobe PDF見る/開く
タイトル: Cominimum Additive Operators
著者: Kajii, Atsushi
Kojima, Hiroyuki
Ui, Takashi
キーワード: Choquet integral
comonotonicity
non-additive probabilities
capacities
cooperative games
発行日: Feb-2005
出版者: Institute of Economic Research, Kyoto University
誌名: KIER Discussion Paper
巻: 601
抄録: This paper proposes a class of weak additivity concepts for an operator on the set of real valued functions on a finite state space omega, which include additivity and comonotonic additivity as extreme cases. Let epsilon be a collection of subsets of omega. Two functions x and y on omega are epsilon-cominimum if, for each E subseteq epsilon, the set of minimizers of x restricted on E and that of y have a common element. An operator I on the set of functions on is E- cominimum additive if I(x+y) = I(x)+I(y) whenever x and y are epsilon-cominimum. The main result characterizes homogeneous E-cominimum additive operators in terms of the Choquet integrals and the corresponding non-additive signed measures. As applications, this paper gives an alternative proof for the characterization of the E-capacity expected utility model of Eichberger and Kelsey (1999) and that of the multi-period decision model of Gilboa (1989).
URI: http://hdl.handle.net/2433/129522
関連リンク: http://ideas.repec.org/p/kyo/wpaper/601.html
出現コレクション:KIER Discussion Paper (英文版)

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。