このアイテムのアクセス数: 244

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
DP775.pdf415.7 kBAdobe PDF見る/開く
タイトル: Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-day Range
著者: Chen, Cathy W. S.
Gerlach, Richard
Hwang, Bruce B. K.
McAleer, Michael
キーワード: Value-at-Risk
CAViaR model
Skewed-Laplace distribution
intra-day range
backtesting
Markov chain Monte Carlo
発行日: 18-May-2011
出版者: Institute of Economic Research, Kyoto University
誌名: KIER Discussion Paper
巻: 775
抄録: Value-at-Risk (VaR) is commonly used for financial risk measurement. It has recently become even more important, especially during the 2008-09 global financial crisis. We pro- pose some novel nonlinear threshold conditional autoregressive VaR (CAViaR) models that incorporate intra-day price ranges. Model estimation and inference are performed using the Bayesian approach via the link with the Skewed-Laplace distribution. We examine how a range of risk models perform during the 2008-09 financial crisis, and evaluate how the crisis affects the performance of risk models via forecasting VaR. Empirical analysis is conducted on five Asia-Pacific Economic Cooperation stock market indices as well as two exchange rate series. We examine violation rates, back-testing criteria, market risk charges and quantile loss function values to measure and assess the forecasting performance of a variety of risk models. The proposed threshold CAViaR model, incorporating range information, is shown to forecast VaR more efficiently than other models, across the series considered, which should be useful for financial practitioners.
URI: http://hdl.handle.net/2433/141344
関連リンク: http://ideas.repec.org/p/kyo/wpaper/775.html
出現コレクション:KIER Discussion Paper (英文版)

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。