Downloads: 2276

Files in This Item:
File Description SizeFormat 
nchembio.640_sp.pdfsupplementary information6.6 MBAdobe PDFView/Open
nchembio.640.pdf4.62 MBAdobe PDFView/Open
Title: TRPA1 underlies a sensing mechanism for O(2).
Authors: Takahashi, Nobuaki  kyouindb  KAKEN_id
Kuwaki, Tomoyuki
Kiyonaka, Shigeki  KAKEN_id
Numata, Tomohiro
Kozai, Daisuke
Mizuno, Yusuke
Yamamoto, Shinichiro
Naito, Shinji
Knevels, Ellen
Carmeliet, Peter
Oga, Toru  KAKEN_id
Kaneko, Shuji  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0001-5152-5809 (unconfirmed)
Suga, Seiji
Nokami, Toshiki
Yoshida, Jun-Ichi  KAKEN_id
Mori, Yasuo  kyouindb  KAKEN_id
Issue Date: 28-Aug-2011
Publisher: Nature Publishing Group
Citation: Takahashi N, Kuwaki T, Kiyonaka S, Numata T, Kozai D, Mizuno Y, Yamamoto S, Naito S, Knevels E, Carmeliet P, Oga T, Kaneko S, Suga S, Nokami T, Yoshida JI, Mori Y. TRPA1 underlies a sensing mechanism for O(2). Nat Chem Biol. 2011 Aug 28. doi: 10.1038/nchembio.640. [Epub ahead of print] PubMed PMID: 21873995
Journal title: Nature chemical biology
Volume: 7
Issue: 10
Start page: 701
End page: 711
Abstract: Oxygen (O(2)) is a prerequisite for cellular respiration in aerobic organisms but also elicits toxicity. To understand how animals cope with the ambivalent physiological nature of O(2), it is critical to elucidate the molecular mechanisms responsible for O(2) sensing. Here our systematic evaluation of transient receptor potential (TRP) cation channels using reactive disulfides with different redox potentials reveals the capability of TRPA1 to sense O(2). O(2) sensing is based upon disparate processes: whereas prolyl hydroxylases (PHDs) exert O(2)-dependent inhibition on TRPA1 activity in normoxia, direct O(2) action overrides the inhibition via the prominent sensitivity of TRPA1 to cysteine-mediated oxidation in hyperoxia. Unexpectedly, TRPA1 is activated through relief from the same PHD-mediated inhibition in hypoxia. In mice, disruption of the Trpa1 gene abolishes hyperoxia- and hypoxia-induced cationic currents in vagal and sensory neurons and thereby impedes enhancement of in vivo vagal discharges induced by hyperoxia and hypoxia. The results suggest a new O(2)-sensing mechanism mediated by TRPA1.
Description: 新たな生体内酸素センサー機構の発見. 京都大学プレスリリース. 2011-08-29.
Rights: © 2011 Nature America, Inc. All rights reserved.
許諾条件により本文は2012-02-28に公開.
この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
This is not the published version. Please cite only the published version.
URI: http://hdl.handle.net/2433/145668
DOI(Published Version): 10.1038/nchembio.640
PubMed ID: 21873995
Related Link: https://www.kyoto-u.ac.jp/static/ja/news_data/h/h1/news6/2011/110829_1.htm
http://www.nature.com/nchembio/journal/vaop/ncurrent/pdf/nchembio.640.pdf
Appears in Collections:Journal Articles

Show full item record

Export to RefWorks


Export Format: 


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.