Access count of this item: 491

Files in This Item:
File Description SizeFormat 
s10144-011-0278-1.pdf760.1 kBAdobe PDFView/Open
Title: Indirect effects of excessive deer browsing through understory vegetation on stream insect assemblages
Authors: Sakai, Masaru
Natuhara, Yosihiro
Imanishi, Ayumi
Imai, Kensuke
Kato, Makoto  kyouindb  KAKEN_id
Author's alias: 境, 優
Keywords: Burrowers
Clingers
Diversity
Sedimentation
Soil erosion
Issue Date: Jan-2012
Publisher: The Society of Population Ecology and Springer
Journal title: Population Ecology
Volume: 54
Issue: 1
Start page: 65
End page: 74
Abstract: Over the past decade, the abundance of sika deer has rapidly increased around Japan. Previous studies have showed overabundance of deer causes drastic reduction of forest understory vegetation, leading excessive soil erosion. However, no study has investigated the effects of excessive deer browsing on aquatic insect assemblages via sediment runoff. These effects are important to understand whether the terrestrial alteration by deer influences aquatic ecosystems. In a primary deciduous forest catchment in Ashiu, Kyoto, a deer exclusion fence has been in place since 2006. We compared forest floor cover, overland flow, stream environment, and aquatic insect assemblages in first-order streams and catchments inside and outside of the deer-exclosure from May-2008 to April-2009. The floor inside the deer-exclosure catchment was covered by lush understory vegetation, whereas outside was almost bare. The overland flow runoff rate at midslope and the dominancy of fine sediment deposition in the streambed were higher outside than inside. Among aquatic insects, burrowers, which are tolerant against fine sediment deposition, were significantly more abundant outside than inside, whereas clingers exhibited the opposite patterns. Collector-gatherers, which feed on fine detritus, were significantly more abundant outside than inside. Meanwhile, filterers were more abundant inside. The Simpson’s diversity index of the aquatic insect assemblages was higher inside than outside. These results suggest that the demise of understory vegetation due to excessive deer browsing has indirectly caused changes in the aquatic insect assemblages of this catchment via increased sediment runoff and subsequent sandy sedimentation of the streambed.
Rights: The final publication is available at www.springerlink.com
This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
URI: http://hdl.handle.net/2433/152318
DOI(Published Version): 10.1007/s10144-011-0278-1
Appears in Collections:Journal Articles

Show full item record

Export to RefWorks


Export Format: 


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.