このアイテムのアクセス数: 508
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
s10957-011-9907-2.pdf | 135.6 kB | Adobe PDF | 見る/開く |
タイトル: | Global Complexity Bound Analysis of the Levenberg–Marquardt Method for Nonsmooth Equations and Its Application to the Nonlinear Complementarity Problem |
著者: | Ueda, Kenji Yamashita, Nobuo ![]() ![]() |
著者名の別形: | 上田, 健詞 |
キーワード: | Levenberg–Marquardt methods Global complexity bound Nonlinear complementarity problems |
発行日: | Feb-2012 |
出版者: | Springer Science+Business Media, LLC |
誌名: | Journal of Optimization Theory and Applications |
巻: | 152 |
号: | 2 |
開始ページ: | 450 |
終了ページ: | 467 |
抄録: | We investigate a global complexity bound of the Levenberg–Marquardt Method (LMM) for nonsmooth equations. The global complexity bound is an upper bound to the number of iterations required to get an approximate solution that satisfies a certain condition. We give sufficient conditions under which the bound of the LMM for nonsmooth equations is the same as smooth cases. We also show that it can be reduced under some regularity assumption. Furthermore, by applying these results to nonsmooth equations equivalent to the nonlinear complementarity problem (NCP), we get global complexity bounds for the NCP. In particular, we give a reasonable bound when the mapping involved in the NCP is a uniformly P-function. |
著作権等: | The final publication is available at www.springerlink.com この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 This is not the published version. Please cite only the published version. |
URI: | http://hdl.handle.net/2433/153411 |
DOI(出版社版): | 10.1007/s10957-011-9907-2 |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。