このアイテムのアクセス数: 242

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
DP815.pdf381.01 kBAdobe PDF見る/開く
タイトル: Robust Ranking of Multivariate GARCH Models by Problem Dimension
著者: McAleer, Michael
Caporin, Massimiliano
キーワード: Covariance forecasting
model confidence set
robust model ranking
MGARCH
robust model comparison
発行日: Apr-2012
出版者: Institute of Economic Research, Kyoto University
誌名: KIER Discussion Paper
巻: 815
抄録: During the last 15 years, several Multivariate GARCH (MGARCH) models have appeared in the literature. Recent research has begun to examine MGARCH specifications in terms of their out-of-sample forecasting performance. We provide an empirical comparison of alternative MGARCH models, namely BEKK, DCC, Corrected DCC (cDCC), CCC, OGARCH Exponentially Weighted Moving Average, and covariance shrinking, using historical data for 89 US equities. We contribute to the literature in several directions. First, we consider a wide range of models, including the recent cDCC and covariance shrinking models. Second, we use a range of tests and approaches for direct and indirect model comparison, including the Model Confidence Set. Third, we examine how the robust model rankings are influenced by the cross- sectional dimension of the problem.
URI: http://hdl.handle.net/2433/155278
出現コレクション:KIER Discussion Paper (英文版)

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。