このアイテムのアクセス数: 371
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Asano, Takao | en |
dc.contributor.author | Kojima, Hiroyuki | en |
dc.date.accessioned | 2013-06-26T05:31:22Z | - |
dc.date.available | 2013-06-26T05:31:22Z | - |
dc.date.issued | 2013-06 | - |
dc.identifier.uri | http://hdl.handle.net/2433/175276 | - |
dc.description.abstract | The purpose of this paper is twofold. First, we generalize Kajii et al. (2007), and provide a condition under which for a game v, its Möbius inversion is equal to zero within the framework of the k-modularity of v for k ≥ 2. This condition is more general than that in Kajii et al. (2007). Second, we provide a condition under which for a game v for k ≥ 2, its Möbius inversion takes non-negative values, and not just zero. This paper relates the study of totally monotone games to that of k-monotone games. Furthermore, the modularity of a game can be related to k-additive capacities proposed by Grabisch (1997). As applications of our results to economics, this paper shows that a Gini index representation of Ben-Porath and Gilboa (1994) can be characterized by using our results directly. Our results can also be applied to potential functions proposed by Hart and Mas-Colell (1989) and further analyzed by Ui et al. (2011). | en |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Institute of Economic Research, Kyoto University | en |
dc.publisher.alternative | 京都大学経済研究所 | ja |
dc.subject | Belief Functions | en |
dc.subject | Möbius Inversion | en |
dc.subject | Totally Monotone Games | en |
dc.subject | k-additive capacities | en |
dc.subject | Gini Index | en |
dc.subject | Potential Functions | en |
dc.subject.ndc | 330 | - |
dc.title | Modularity and Monotonicity of Games | en |
dc.type | research report | - |
dc.type.niitype | Research Paper | - |
dc.identifier.jtitle | KIER Discussion Paper | en |
dc.identifier.volume | 871 | - |
dc.textversion | author | - |
dc.sortkey | 00871 | - |
dcterms.accessRights | open access | - |
出現コレクション: | KIER Discussion Paper (英文版) |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。