このアイテムのアクセス数: 157

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
DP886.pdf318.94 kBAdobe PDF見る/開く
タイトル: Deriving the Information Bounds for Nonlinear Panel Data Models with Fixed Effects
著者: Haruo, Iwakura
キーワード: asymptotic effciency
convolution theorem
double asymptotics
nonlinear panel data model
fixed effects
interactive effects
factor structure
incidental parameters
発行日: 27-Jan-2014
出版者: Institute of Economic Research, Kyoto University
誌名: KIER Discussion Paper
巻: 886
抄録: This paper studies the asymptotic efficiency of estimates in nonlinear panel data models with fixed effects when both the cross-sectional sample size and the length of time series tend to infinity. The efficiency bounds for regular estimators are derived using the infinite-dimensional convolution theorem by van der Varrt and Wellner (1996). It should be noted that the number of fixed effects increases with the sample size, so they constitute an infinite-dimensional nuisance parameter. The presence of fixed efFects makes our derivation of the efficiency bounds non-trivial, and the techniques to overcome the difficulties caused by fixed effects will be discussed indetail. Our results include the efficiency bounds for models containing unknown functions (for instance, a distribution function of error terms). We apply our results to show that the bias-corrected fixed effects estimator of Hahn and Newey (2004) is asymptotically efficient.
URI: http://hdl.handle.net/2433/180380
出現コレクション:KIER Discussion Paper (英文版)

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。