このアイテムのアクセス数: 439
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
JEMS_519.pdf | 133.35 kB | Adobe PDF | 見る/開く |
タイトル: | Trudinger–Moser inequality on the whole plane with the exact growth condition |
著者: | Ibrahim, Slim Masmoudi, Nader Nakanishi, Kenji ![]() ![]() ![]() |
著者名の別形: | 中西, 賢次 |
キーワード: | Sobolev critical exponent Trudinger-Moser inequality concentration compactness nonlinear Schr ödinger equation ground state |
発行日: | 2015 |
出版者: | EMS Publishing House |
誌名: | Journal of the European Mathematical Society |
巻: | 17 |
号: | 4 |
開始ページ: | 819 |
終了ページ: | 835 |
抄録: | Trudinger-Moser inequality is a substitute to the (forbidden) critical Sobolev embedding, namely the case where the scaling corresponds to L∞. It is well known that the original form of the inequality with the sharp exponent (proved by Moser) fails on the whole plane, but a few modi ed versions are available. We prove a precised version of the latter, giving necessary and sufficient conditions for the boundedness, as well as for the compactness, in terms of the growth and decay of the nonlinear function. It is tightly related to the ground state of the nonlinear Schr ödinger equation (or the nonlinear Klein-Gordon equation), for which the range of the time phase (or the mass constant) as well as the energy is given by the best constant of the inequality. |
著作権等: | © 2015 EMS Publishing House. This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 |
URI: | http://hdl.handle.net/2433/200756 |
DOI(出版社版): | 10.4171/JEMS/519 |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。