このアイテムのアクセス数: 439

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
JEMS_519.pdf133.35 kBAdobe PDF見る/開く
タイトル: Trudinger–Moser inequality on the whole plane with the exact growth condition
著者: Ibrahim, Slim
Masmoudi, Nader
Nakanishi, Kenji  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-8988-1726 (unconfirmed)
著者名の別形: 中西, 賢次
キーワード: Sobolev critical exponent
Trudinger-Moser inequality
concentration compactness
nonlinear Schr ödinger equation
ground state
発行日: 2015
出版者: EMS Publishing House
誌名: Journal of the European Mathematical Society
巻: 17
号: 4
開始ページ: 819
終了ページ: 835
抄録: Trudinger-Moser inequality is a substitute to the (forbidden) critical Sobolev embedding, namely the case where the scaling corresponds to L∞. It is well known that the original form of the inequality with the sharp exponent (proved by Moser) fails on the whole plane, but a few modi ed versions are available. We prove a precised version of the latter, giving necessary and sufficient conditions for the boundedness, as well as for the compactness, in terms of the growth and decay of the nonlinear function. It is tightly related to the ground state of the nonlinear Schr ödinger equation (or the nonlinear Klein-Gordon equation), for which the range of the time phase (or the mass constant) as well as the energy is given by the best constant of the inequality.
著作権等: © 2015 EMS Publishing House.
This is not the published version. Please cite only the published version.
この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
URI: http://hdl.handle.net/2433/200756
DOI(出版社版): 10.4171/JEMS/519
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。